PC-8201A Technical Manual

First edition

Mar 15th 1984

NEC Corporation
Personal Computer development division

IMPORTANT NOTICE

(1) All rights reserved. This manual is protected by
copyright. No part of this manual may be reproduced in
any form whatsocever uwithout the written permission of the

copyright owner.,

(2) All efforts have been make to ensure that the contents

of this manual are correct; however, should any errors be
detected, NEC would greatly appreceate being informed.

(3) NEC can assume no responsibility for errors in this
manual or their consequences. The entire risk as to the
results of and performance of this manual is assumed by

YOul.

(c) 1984 NEC Corporation
Personal Computer Development Division
Tokyo, Japan

The numeric notation and rules in illustration

In this manual, all numbers are expressed in Decimal
unless preceded by special radix prefix “X, “0 ,"B and "D.
“X, "0 and "B represent hexadecimal, Octal and Binary numbers
respectively. For instance, ~X1088 is hexadecimal number
1000, which is 4996 in Decimal. Similarly 70408 is octal
number 400, Wwhich 1is 256 in Decimal. ~B180080G8 is Binary
number 100008800, 128 in Decimal. “D is used to explicitly
tell that is the decimal number.

In the illustration, the upper side of the memory map
is near “XFFFF. So the part drawn below .another part is
allocated at lower address area.

“XFFFF
======s=========== | Upper.
H '

{ File A '

{ File B :

H i 1 Lower

H HERY)
“X989808 |

Fig 8.1 The °'File A' is located
upper the ‘File B'.
(=" means "skipped’.)

And the address

illustration points the

and the pointers written in
just above the line.

APOINT ---> “X80089

(*XD86ov) “XDoBe
i (*XEFFF) :
;================ (Skipped)
1 ("X8608) i
: {== APOINT
(*X7FFF)

Fig 8.2 Pointer

and its contents

the

Authors:

Chapter 2 -- 4 |

Mr.Youshiro Hayashi

Software Engineer

Application Technology Department

Personal Computer Sales Promotion Division
Chapter 1,5 -- 8

Mr.Hiroaki Yokoyama

Software Engineer

" Development department
Peraonal Computer Development Division

Chapter 9 -- 14

Mr.Akio Takagi

Software Engineer

Development Department

Personal Computer Devglopment Division
Chapter 15

Mr.Moriharu Seki

Hardware Engineer

Development Department
Personal Computer Development Division

Rewritten and edited by Mr.Hiroaki Yokoyama

CHAPTER

CHAPTER

CHAPTER

" CHAPTER

HAPTER

1

WWOWWLWWW WLWWW W

CUIBEWWN R

~PONER

*
(WS

INTRODUCTION

MEMORY MAP

OVERVIEW
BANK SWITCHING ARCHITECTURE . .
Bank Switching Hardware . . .
Bank Switching Software . . . &
GENERAL MEMORY MAPPING OF INTERNAL
SAMPLE . * [] L] L L L L] L] [] L] ° L L

HOW TO USE 2ND ROM

CONSIDERATION OF INTERRUPT o« o e

Power Off Trap (ADDRESS “X4CFA)
Barcode Reader « « « ¢ ¢« o o ¢ o
UART [] L 2 [] L] L] L] L] L L] L[] L * L]

Interval Timer (ADDRESS “X1EBE Wi

I nterrupt Y e & o & o e o
ROM SWAPPING METHOD . o

e (Ne o o o

t

THE METHOD TO USE 1ST ROM ENTRY FROM

Sam le « + & s s o
SEQUENCES IN THE 2ND ROM .
SUMMARY -- IMPORTANT NOTICE
SAMPLE « ¢ ¢ ¢ ¢ o ¢ o ¢ o o

e o o o

¢ o o

HOW TO USE 2ND/3RD RAM

READ AND WRITE TO ANOTHER RAM BANK

Methed 1 CUSING 1st ROM1

GETBNK L°X7EECT + + « ¢ « + &
PUTBNK LC"X7EEB] . .

h D

e o o o N)e o

- L) L) *

Method 2 CUSING YOUR ORIGINAL CODEJ

UNDERSTANDING THE RAM FILE CONCEPT

SUMMARY . .

WHAT IS RAM FILE7
DO File (ASCII Fi
BA Fl]e ¢ o o .
CO Fl]e L 4 [] L]
The Order Of The Fi

e

* * — @ L]
L] > * L] *
L[] L] * * -
e * o eo.0 o

3
A
ITre o o o o
X

-l o * - * *

)
1

e

e © o o o o

* L] * L 2 L] L]

e £ ¢ o o o

e o o o o o o o o O o e o o o

e o o o o e ¢ o o Do o N e o o o

e e o o o o

b

(&)
o o o o Le & ~—e o o o

* * * * *

®

* L] * L] * L] L] L] L] L) L] L

- L] . * L) L)

L] - L] L] * *

CHAPTER 6 DIRECTORY STRUCTURE _ |
6.1 DIRECTORY CONFIGURATION PER ENTRY . « « ¢« ¢ o « « 76

CHAPTER 7 . RAM ORGANIZATION
7.1 MEMORY MAP ABOUT RAM FILES ¢« « « o s o s o o o o o 09
?.2 BOOKKEEPING AREA L] L] L] ° L] [] [] L] * [] L * * L[] L L] * 86
7.2.1 Part I (For RAM File Handling And BASIC) . . . 87
) ?.2.1.1 FSIDSV L] L J L] L] . L] L [] [] L] L[] L L] L] [] * L] L[] * L[] 88
. ?‘2.1.2 HIMEM L [] L] [. ° [] L] L L] L] [] L] L] L] L] L[] * . * 88
?‘2.1'3 TXTTAB * L[] L] . L] L] L] L [] [] L[] L] [] [] * L] L[] L] [] » 89
?.2‘.104 STKTOP [] . ° L] . L] . . L[] L] L[] L] [. L] L[] L] L] L] 89
?'2.1'5 DIRTBL * [] L[] . * * [] [] . L] . L] [] L * L] [] L] [] L] 90
7.2.1.6 NULDIR ¢ o o o o o o o o o o o o o s s o o o o 90
?.2.1.? SCRDIR [* * . L] * ° * L[] L L[] L] * * [J L] L] *] L] 91
?.2.1.8 EDTDIR L]] L] L] L] * [] * * L[] L] L[] L] L . * . L] [L] 91
?.2.1.9 USRDIR * L] * * L 2 L] [) * L] L] [] L] * L] * * * [] * L] 91
’ ?.201.16 BOTTOM [] * * L L] L J * . L] L J L] L] * * .. . [] * L) L] 92
?02.1.11 MEMSIZ L] L] . L] L] L] [] L] * [] * L] [] L [] L] L] L] L[] 92
? . 2 L] 1 L4 12 FRETOP * [[] [) [] L] [] L] [] L] * L] L J * L] [] * [] L] * 92
?] 2 [} 1] 13 ASCTAB * [} [[. [) . [] [N [} . L] L) [] [] . * [} [} [93
?.2.1014 BINTAB * * * L] L] * K 3 L] * * L) . < L] * L] L] * L] [] 93
?.2.1.15 VARTAB []] * L] [] . * * L[] * L[] L * * L] L [] [] L) L] 93
? ‘2 L] 1 L] 16 ARYTAB [] L] L] L] L] . L] * L] L] L[] . [] . L] L] [] L L . 94
? * 2 L] 1 L] 1? STREND [] L] L[] L] * [] [] * [] L] * * * L] L 2 * L] [] [] L] 94
?‘2.1.18 FILTAB] . . L J [] * L] . L] L * L J .A * L] L] L] L] L) L 94
? . 2 * 1 [19 NULBUF L L] L] L] L * * * . L] . > L] L] 95
7:2.2 Part II (VRAM Area For LCD) B e s o o o o o 98
7.2.3 Part IIl (Bookkeeping Area For BIOS) « ¢ o« o 98
70204 FCB (Flle ContrOI B]OCk) e o6 o 6 o 6 o o o o o o 99
CHAPTER 8 RAM FILE HANDLING
8.1 WHAT SHOULD WE DO IN RAM FILE HANDLING 183
8.2 HOW TO MAKE NEW FILE . . . e o o o o o o o o s o 1066
8.2.1 How To Register The New F11e Name .+ « « « « « o 186
80202 HOU TO Make DO Fl]e e o o & 6 o o o o e e e o o 186
80203 HOU TO Make A BA Fi]e o o 6 o o o e o & o e o+ 189
83204 HOU TO Make A CO Fi]e * e * e . 111
8.3 HOW TO DELETE A FILE + « 4 o o« o« o o o o o o o o « 113
8.3.1 How To Delete A DO File o o o o o o o o o o o« o 113
8.3.2 How To Delete A BA File . o o « o o o o o o« o o 114
8.3.3 How To DELETE A CO File e o o o o o o o o o o 117
8.4 HOW TO APPEND DATA TO DO FILE e o e s e e e e e e 122
8.5 HOW TO INSERT DATA TO DO FILE . + ¢ o« « o « « .+ « 123
8.6 HOW TO DELETE DATA FROM DO FILE . . . e o e o o+ 124
8.7 LING IN ROM #@ . 125

USEFUL ROUTINES FOR RAM FILE HAND

CHAPTER

CHAPTER

00 00 00 00 00 €0 00 00 (0 00 (0 O
00 00 00 00 00 0D 00 00 ~I =~~~
NOAUMRWONDRE, BONE

- L L L L
) * [2 L * * *

PWNP

VUIUIVARERRE RRADBRW WOWOWWWWN -

* L] * L]
*
R

W URPRPOWOW NN 2ONNNDDN -

* * * [} *
L] L]
>

* L]

*

10

10.1
10.1.1
10.1.2

MAKHOL
LNKFIL
MASDEL
CHEAD .
SAMPLE PROGRAM e o o o
Make A New DO F1]e (ASCii F
Save Data Into DO File . .
DELETE SOME DATA FROM DO FI

[) L) L] L]

* * * L

* [] * L
* L] [] * *

o * L] L

L] [] * *
L) [] L) * L)

DELETE DO FILE . . .
DELETE BA FILE .
MAKE NEW CO FILE
DELETE A CO FILE

Nt
* L L] L] * L]
L] L] [] * L] L] * *] * L L[]
) * L] L * * * L] * L] . ®
[) L] * ® * L 4 L] * L) L) * *
L) L) * * [) * L] L] L) * [) L)
* * * * * L] L] * . * * *

e o o o [T e 14e0 o o o o
m

LCD INTERFACE

OVER VIEW . o e e e 4 e e
CONSTRUCTION OF LCD . e o e e e
I/0 PORT RELATED TO LCD o o o e o

BLOCK SELECT —-= PPI 81CS5 PORT A

N

e o o o o o (P e o e o o Pe o o

LCD COMMAND SET 4+ o o o o
Display ON/JOFF.
Set Address Counter . . .
Set Starting Page. . .
Select Address Counter Mode

Read Status --- Read The Status Of

Df‘lvef'o . * 6 o o & o e o

Write/Read Dlsplay Bata .« ¢ +» + &

SOFTWARE FOR LCD . . . e o o o o

How To Initialize The LCD. o o s o
Sample Program For LCD Initialization

How To Write A Character. . . « . « &
Ségple Program Of Uriting A Character O
L L * L] L] L []

How To Set/reset A Dot On The LCD. o o e
Sample Program For SET/RESET Dot. - . .

How To Define A Character
Structure Of Character And Hou To Def1n

n

e o o () o o o o ~—jo o o

L]
*
*
L
L]
egm
L
.
L[]
L]
o

.
.
.
.
.
.
.
.
o
t
.
.
.
.
.
.
]
.
.
.
.
e

How To Store The Your Owun CG . « « ¢« « « o
AVAILABLE SYSTEM WORK AREA ¢« ¢« ¢ ¢ « o ¢ o &

How To Use The CG In System ROM. . .

VRAM AREA IN SYSTEM Work Area . . .

—!oooooo
J

L] L) * L] — e * * *
ot

Reverse The Attribute Of The Specified Area.

KEYBOARD INTERFACE

THE KEYBOARD MATRIX « ¢ ¢ o o o o o o o o
1/0 Port For Keyboard . . .
KEYBOARD STROBE ===—= PART A/B OF 81C55 .

* . * [) * > L) [] L) - * L) * -

* . L 2 - L] > - * [] L]

- ® L L] L)) - [) -* L) Ll [)

126
129
132
133
134
135
139
142
144
146
149
152

134
154
1356

156

157
157
158
168
142

163
144
1635
165
166
148

169
172
172
177
177
179
180
189
182
183

184
186
186

CHAPTER

CHAPTER

CHAPTER

CHAPTER

16.1.3 KEYIN ==——- Read Keyboard Data
18.1.4. Keyboard Scanning .

18.2 SOFT WARE FOR KEYBOARD OPERATION.
16.2.1 How To Read The Keyboard
16.2.1.1 Sample Program Reading Keyboard
11 "CMT INTERFACE

11.1 HARDWARE FOR CMT e e o s e o o e
110101 Ur"iting Oper‘a'tion. ¢ o o e e o o
11.1.2 Reading Operation. « « + ¢« + .+
11.1.3 Baud Rate Generation. =« o« + +
11.1.4 I1/0 Port For CMT . . . o o o e
11.1.4.1 SCP ===-- SYSTEM CONTROL PORT
11.1.4.2 PPI 81C55 Command Set
11.2 SOFTWARE FOR CMT ¢« ¢ ¢ ¢ o« o o o
11.2.1 CMT MOTOR CONTROL '« ¢ « o ¢ o &
11.2.2 Baud Rate Generation « « o« « o
11.2.3 Write A Data To The CMT
11.2.4 Reading A Data From The CMT . .
12 SERIAL INTERFACE

12.1 HARDWARE OF SERIAL INTERFACE . .

120101 I/O Por‘t e 6 o & e e e e & o e o .
12.1.1.1 Channel Select — (System Contro] Port)
12.1.1.2 "UART Mode Control .« « ¢« ¢ o ¢ o o o o &
12010103 UART Status Read ¢ o o
12.1.1.4 Set UART Baud Rate (PPI 81055 T1mer Sect1
12.1.1.5 UART DATA I/0 Port « ¢ ¢ o o o ¢ o o o o
12.2 SOFTWARE DESCRIPTICN. ¢ ¢ ¢ o o o o o o o o
12.2.1 How To Initialize Serial Port . . « « «
12.2.1.1 Sample Program ... How To Initialize SERI
Port o o 0 " e o e e o
12.2.2 SEND A Data To The Serlal Port o« o o o o
12.2.3 Read A Data From Serial Port. =+ o o « + &
12.3 AVAILABLE SYSTEM AREA. ¢« ¢ ¢ ¢ o o o o o o
13 BARCODE READER

13.1 ELECTRIC SPECIFICATION . «

1302) THEORY OF OPERATION e o o o o .

14 PARALLEL INTERFACE
14.1 HARDWARE SPECIFICATION

.
L]
L4
-
]

L] * L)] * L) [] L] * * L] L2

* * - [] -

L] * L] L] * L] L] L]] L] L) *

* * L L] L) L] L) * * * * *

1
@ o 6 6 o o o o e o o

* L * * L] L) * L] * * * *

ooooboooO.oooo

J

® O @ \Ns e o o o o

O

® o6 o o ¢ o o ° o

187

188

189
189
190

193
194
195
196
197
197
197
199
199
200
201
2083

2086
207
207
208
209
210
212
213
213

214
217
218
219

221

. 222

223

CHAPTER

14.1.1
14.1.2
14.1.2.1
14.1.2.2
14.1.2.3
14.1.3
14.2
14.2.1
135

15.1
15.1.1
15.1.2
15.1.2.1
15.1.3
15.1.4
15.2
15.3
15.3.1
15.3.1.1
15.3.1.2
15.3.1.3
15.3.1.4
15.3.1.5
15.3.1.6
15.3.1.7
15.3.1.8
15.3.1.9

Physical
1/0 Port
Port A
Port C

Interface Of PC-8281A . +« « + « « &
For PRINTER Interface. « « ¢ o « &
~—== Data Out Put Port For Printer.
---- BUSY,SLCT Signal Read . . .

SPC(System Control Port) --- STROBE Output
Port L] * * * * * [] * * [] L[] L] L) L[] L[] L] [] * *
Basic Theory OFf Writing A Data To Centronics
SOFTWARE SPECIFICATION . . R R
How To Write A Byte To The Printer. =« « «

HARDWARE

SYSTEM SLOT . . .
Assignment Of S1gnal
Explanation Of Pin .

Function Of Signal
DC Characteristics .
AC Characteristics .

MEMORY CONTROL CIRCUIT

I/0 ADDRESS
Detail Information Ab

Reserve Area . . .
System Control . .
Bank Control . . .
Bank Status . . .
PIO 81CSS Address
UART Data I/0 Port
UART Control Port
Keyboard Input . .
LCDC Address . . .

® o o o o o o o @ o e o o o o o o o
e o6 o @ o o o o o (-.- e o ¢ o o o e o
® & & o o6 o o o o e ¢ o o o o e o
e o o o o o o' e o Bo ¢ o o o o o o
® © 6 o6 o6 o o 6 o6 + 6 & 6 o 6 o o »
e @ o ¢ e © o 66 o6 o 0 e © o o o o o
® o o @ o ¢ o o 6 o & o o o ¢ e o @
® & e e e o o 6 0 e o o o o ¢ o o o
s ¢ o o o o o oA ® & o o o e e o o o
® & o O o ¢ o O & 6 O o o o e e o @
® O o @ e ©® o ¢ o6 @ o ¢ ¢ o € o o o
® 6 o o o o o o o6 o6 © o O o o o o o

- 19-

¢ o e e

L] . L L] L] - L] . L 4 L) L [) L) L] L] * - L)

° * [2 L] L L 2 L) [] L) [] L) * L L) L] . L]]

223
223
223
224

224
225
226
226

229
229
232
232
236
237
240
245
247
247
247
248
249
2350
234
234
257
257

CHAPTER 1
INTRODUCTION

The portable personal computer, PC-82801A is a unique
and practical computer. It has many special capabilities in
it. For example, it uses large LCD (Liquied Crystal Display),
CMOS (Complementary Metal Oxide Semiconductor) technology and
special built-in Software. :

The built-in software features are very powerful ard
useful. But for using PC-8291A fully in particular purpose,
new Software written in Machine language might be requested.
One of the built—-in software, N82-BASIC is very useful to make
a small utility, but it’s not enough +to make a large size
‘ytility, for instance, Spread Sheet or new Word Processor.

In order to support the programmers who want to make
such a large programs, and to support the programmers who want
to manage the hardware features directly, this document
describes ‘not only the detail hardwate features of PC-8201A,
but also the know-how to use these features without any
trouble.

The most important thing is ‘compatibility’. The

built-in Software features keep the promise in using the
memory, I/0 interface and interrupt functions. The built-in
Software checks many critical points at Power—on automatically
as far as you don't remove the ROM #8. So if you break the
~ promise, PC-8261A begins ‘Cold start’ to initialize the all
contents in RAM. In this case, the important files and data
which you stored are flushed.

' The promise for using PC-8281A°s features is described
in each chapter. Before making a your special program, please

_11—

INTRCOUCTION

refer to the corresponding chapteré. The previous INDEX will
help you.

, The built-in Software wuses a small part of the
' PC-BZG;A's special features. With this manual, may you make a
super programs for your own purpose!!

_12-

CHAPTER 2
MEMORY MAP

2.1 OVERVIEW

The PC-8201A has the Fo]]ouing memory capacity. The
value specified with ‘Max’ means the maximum capacity that is
greatly expanded by adding RAM/RCOM chips or RAM ;artridge.

ROM 32K bytes
(Max 64K bytes)-
RAM 16K bytes
. (Max 96 K ¢ 32k bytes x 3 bank)
2 banks are equipped on Main

board of PC-82861A and 1 bank
is provided with RAM cartridge.

And PC-8261A has three useful programs in the standard
RgM, ROM #9. These programs are (N82-)BASIC , TEXT and
TELCOM. .

N82-BASIC: Microsoft BASIC, spec1a11zed
for PC—-8281A.

TEXT: Simple and powerful word
processor
TELCOM: Communication program with

other digital computers
via RS-232C.

The simple memory map of PC-8201A is illustrated 1in

- 13 -

MEMORY MAP

the next figure. This illustration is a one of the standard
pattern. Refer to Chapter 15 to understand the hardware
expansibility, the detail configuration of memory and how to

change the memory configuration.

- 14 -

MEMORY MAP

Bank 8 Bank 1 Bank 2 Bank 3

“XFFFF

! RAM ' ' I :

i STANDARD: H . H

S B H i (RAM i | (RAM :

“XCe09 P o#2) Pl #3) H
“XBFFF : I :

! RAM : : Lo 5

i (option)i H . :

R 3 : H HE '
~X8808 - ' .- :
“X7FFF _

{ ROM { | ROM i | RAM ' ; RAM '

i STANDARD: ! HEH : H :

! #0 HERHEE 31 Vo 82 1 #3 '

e
Main memory . RAM cartridge

Fig 2.1 PC-8281A MEMGORY MAP

The RAM #2 and RAM #3 can be located both low
addresa, from 8 <to “X7FFF, and high address, from
“X8888 to “XFFFF. This selection can be done by PORT
access. Refer to chapter 2.3. '

_15-

MEMORY MAP

2.2 BANK SWITCHING ARCHITECTURE

The heat of PC-82081A is the Intel 80C85, which is 8
bit processor and whose address bus is 16. Thus, the 898C8S5
can access 64K of memory at a time. In PC=-8201A, however,
special memory access function called memory-bank switching is
supported. So the 64K barrier in 8-bit microprocessor can be
tricked in PC-8201A.

The RAM in the PC-8201A is divided into units referred
to as 'BANKS®. One bank can contain a maximum of 32K bytes of
memory, while the RAM can be expanded to hold a maximum cf
three banks. (RAM #1, RAM #2, RAM #3)

The RAM #2 and RAM #3 can be located in two different
positions, lower position is from "X8688 to "“X7FFF and higher
position is from "“X80688 to “XFFFF) And RAM #3 is detachable,
because it is provided in RAM cartridge. The bank=-switching
is executed every 32K bytes. For the sake of this Ilimitation
it is impossible to access the half part of RAM #1 and half
part of RAM #2 at a time. In other words, you cannot set up
the this kind of memory allocation, lower half of RAM #2, from
“X88088 to “XBFFF, and higher part of RAM #1, from ~XCG888 to
“XFFFF as 32K of memory. The variety of memory allocation is
illustrated and explained kindly in Chapter 15. The
explanation about the software specification in bank-suwitching
is shown in the next section.

The RAM #2 and RAM #3 can be protected by a °‘PROTECT
SWITCH®. The °PROTECT SWITCH® for RAM #2 is equipped at the
real panel., Refer to the page 1-3 in PC~8281A User’s guide.
The RAM #3 has it at the side of the cartridge. But
unfortunately, RAM #1 has no such a protect function. When
you use this protect switch, you cannot use that RAM bank in
usual way, for instance, BASIC. Because, PC-8281A uses the
highest RAM area, from “XF388 to “XFFFF to save the current
status of PC-8201A every time.

All RAM chips consists of CMOS and are back=-uped by
battery. All data and program files stored in RAM will be

kept, even if the power suitch is turned off. If you make a
special utility for 2nd ROM or special RAM configuration, you
have to consider about this Power—down sequence. Refer <to

chapter 3 to understand the Power—off trap in ROM #0.

-16-

MEMORY MAP

2.2.1 Bank Switching Hardware

The ‘bank—switching®' is performed by OQUT instruction.

The OUT instruction outputs 8 bit data to. the 1/0 port. The
port address and that bit assign of the 8 bit data is shown

beloq.

MSB

PORT ADDRESS “XA1 (0OUT)
Bank control

¢ 7 6 ¢ 3 V4 3 2 11 1 8
Bit 7 -—- not used

Bit 6 -— not used

Bit S - not used

.Bit a —— not used

Bit 3 .--—- High address

("X8088 - “XFFFF) selection #2
Bit 2 —— High address

("X8008 - "XFFFF) selection #1
Bit 1 -—- Low address

1 (7X080@ - “X7FFF) selection #2
Bit @ —-— Low address

("X0880 - “X7FFF) selection #1

- 17 -

MEMORY MAP

High address #2 High address #1

]] Bank #0
e 1 not used
1] Bank #2
1 1 Bank #3
Low address #2 Low address #1

@] Bank #0
") i Bank #1
1] Bank #2
1 1 '

Bank #3

—18_

(RAM

(RAM
(RAM

(ROM
(ROM
(RAM
(RAM

#1)

#2)
#3)

#9)
#1)
#2)
#3)

MEMORY MAP

The current status of the memory, the status of
bank=-switching, can be examined by IN instruction. The IN
instruction reads a 8 bit data from the specified 1/0 port.
See next figure about the Port address and bit assignment of

the data.

-

PORT _.ADDRESS 7TXABH (IN)
Bank status

Mg : ¢ + 66 + 5 + 4 + 3 + 2 4+ 1 1 @8 1
Bit 7 —-— Serial interface status #2
Bit 6 — Serial interface status #1
Bit S —_—— Not used
Bit 4 — Not used
Bit 3 ——— High address (°X8808 - “XFFFF) status
#2 '
Bit 2 _— High address (°X8888 - “XFFFF) status
#1 .
) Bit 1 —— Low address (°X0908 - “X7FFF) status
. .
Bit @ — Low address (°X8888 - “X7FFF) status
#1
Serial I/F #2 Serial I/F #1
- @ : 9 Not used
9 , ~ 1 SI0 port
1 8 Floepy
o disk port
1 1 RS-232C port

High address #2 High address #1

Bank #@ (RAM #1)
Not used :
Bank #2 (RAM #2)
Bank #3 (RAM #3)

[l ol - WY
ROrO®

Low address #2 Low address #1

e %] Bank #0 (ROM #0)
0 1 Bank #1 (RCM #1)
1 e Bank #2 (RAM #2)
1 1 Bank #3 (RAM #3)

Refer to Chapter 12 about Serial Interface.

- 19 -

MEMORY MAP
2.2.2 Bank Switching Software

The bank-switching capability is used in Menu mode.
The °BANK® command, arranged in Function key 18 (Shift + F.S)
uses this function. This function falls into the Bank handler
routine, CHGBNK, “X7EAB. The CHGBNK checks the current bank
status, tests whether the bank really exists, save <the new
bank # in BANK (°“XF3DB), changes the bank status and jumps to
the address 8. Jumping to address @ causes °COLD START® if
the bank has not ever used or the flag named FSIDSV has a
wrong value. (Refer to the section 3.2 Bookkeeping area.)
Otherwise, Jumping @ does 'WARM START".

In order to test the existence of the another bank,

CHGBNK reads the contents of <the address, “XEG008, in that

destination bank, modifies that wvalue, restores it, and

re-reads it. If that bank were really in exist, the value
" read first and the value re-read last are not identical.

The reason why CHGBNK jumps 'into the address 8 is, you
might already notice, to set up the bookkeeping area. As
described in Chapter 7, all standard programs and operating
system uses this area every time to keep the current status.
This area contains very important pointers, flags and
interrupt routines. So without setting up this area, that
bank cannot be handled with ROM #8 correctly.

If you use a bank only with your - special application
program, which does not use the pointers on interrupt routines
in the bookkeeping area, you might think <that you need not
care about the bookkeeping area. But please do not forget
that "SHIFT+F.S' in menu level can change the bank any time.
I recommend that you will keep the current rules akbout
Bank-switching in ROM #8, and set up the bookkeeping area.

Refer chapter 4 °HOW TO USE 2ND/3RD RAM®' to get more
detail documents.

- 20 -

MEMORY MAP
2.3 GENERAL MEMORY MAPPING OF INTERNAL SOFTWARE USE

You know that the ROM #8 addressed from 0 to “X7FFF is
used for standard programs and operating systems. (Sometimes,
*standard programs represents BASIC, TEXT and TELCOM

especially, ‘Operating system' also represents 'Menu’. But
there ig no e§p1icit border line between <the ‘standard
programs and operating system'. But [do sometimes use

these words to explain the concept of the PC-8201A°s built—-in
software.) Also, Some parts of the RAM memory area are
reserved and used by that standard programs and operating
system. The memory map about the RAM area :is figured at next
page. The each part of the reserved area is pointed by
pointers in the ‘book-keeping area’, located at the highest
part of the RAM memory, from “XF388 to “XFFFF. And the
following 2 items are included in the book—-keeping area, too.

Interrupt routine
System work area

-21...

MEMORY MAP

Fig 2.2 PC - 8201A RAM AREA MEMORY MAP

“XFFFF
Bookkeeping
area

“XF388°
‘1 User machine
stored area

<- CHIMEM3] “XF384

File control H
block area H

<= CFILTABI “XFB&3

2 Bytes space |

String area !<- CMEMSIZ3 ~XFASA

(used) H

! String area (<- CFRETOP] “XFABF
i (free) H
Stack area !<- CSTKTOP1 “XF459

1{- Stack Pointer

Free area H
1
(]

<- CSTREND3 “XFAE?

Array stored |
area :

<- [ARYTAB] “XFAE7

Simple '
variable area :(-'EVARTABJ “XFAES

i CO files H

{ area 1<~ CBINTAB1 “XFAE3
1 EDIT area : :

i for BASIC 1<{- CEDTDIRJ+1 °F886+1

Paste buffer | ’
1<{- CSCRDIRJ+1 ~XF878B

for TEXT
i .00 files '
i area 1<{- CASCTAB1 “XFAE1L

non-registered

BASIC file i {=CNULDIRJ+1 “XF876+1

- 22 -

MEMORY MAP

i +BA files ' '

' area 1<-CTXTEND] “XFA88

i Current BA H

i file . <~-CTXTTABI] fXFASD

i +BA files] ' 4

| area 1<-CBOTTOMI+1 “XF980+1

i 1 <-CBOTTOM] “XF980

- 23 -

MEMORY MAP

Brief explanation about pointers which appear at the
previous page.

CBOTTOMI
CTXTTABI
. CTXTENDI]
CNULDIRI
- CASCTABI
CSCRDIR]
CBINTABI
CVARTABI
CARYTABJ
CSTRENDJ]
CSTKTOP1
CFRETOP]
CMEMSIZ]
CHIMEMI

rf.

‘DIRECTORY STRUCTURE®
those chapters,

Bottom address of RAM

Beginning of the current BASIC program
End of the current BASIC program
Non-registered BASIC program
Lowest address of ASCII files
SCRAP file

Lowest address of binary files
Simple variable space

Start of array table

End of Array table

Top of stack space

Top of string free space

Highest location in memory

Highest memory available toc BASIC
(The same as CLEAR’s 2nd parameter)

Chapter ‘5 "UNDERSTANDING THE RAM FILE CONCEPT®,
‘RAM ORGANIZATION®.
and detail

and

the concept of the files

explanation about the pointers are described.

- 24 -

MEMORY MAP

2.4 SAMPLE

TITLE Bank switching program

This sample will only change the bank of
RAM addressed from “X80088 to “XFFFF,

"You had better check that the bank which
you want to suwitch really exists. And you
should save the next bank # at the
bookkeeping area, BANK.

Entry None
Exit None
Bank will be changed

VO B VO VO Ve VO VWO VO WO VO VO we VO B

Bank rotation #1 =) #2 =) #3 =) #1 =) ...

*

<< SYSTEM labels >>>

SYSTEM EQU ~X8@08 ; Reset address
CONTRL EQU “XeA1 s Bank control port
STATUS EQU “XeaAe s Bank status port

; << Bank switching program >>>

ORG “X81008 ;s This program must be
{ stored between “X8000
;s and “X7FFF
CHECK: DI 3 Disable interrupt
IN STATUS } Read current bank status
MOV B,A ;3 Save current bank status
ANI “BOGGOG110609 s Pick up high bank status
s only
NEXTB:
ADI “BoB0BB100 .4 Set next bank data
CPI “BE00BG1609 : This pattern was not used!
JZ NEXTB ; Set up next bank data
;s for lap around
MOV C,A ;s Save new bank data
MOV A,B 3 Remember old bank status
ANI “B11119011 s Do not change bit data
: 5 without RAM bank data“
ORA C : Set new RAM bank
ouT CONTRL $ Select bank

_25-.

MEMORY MAP

EI
JMP SYSTEM

END

- 26 -

Enable interrupt

We must update book
keeping area.

Jump “XB00B is the

best way.

CHAPTER 3
HOW TO USE 2ND ROM

When you want to make some programs stored in 2nd RCM,
there are a lot of matters should be attended and stored in
the 2nd ROM, The matters are interrupt jump tables and power

on/power off sequences. You have to implement these tables
and sequences in order to process the ROM bank switching
smoothly. Otherwise, PC-8201A will run away on switching the

ROM bank. First half sections describe the interrupt
functions and power sequence. .

And you have to know the rules to handle the files and
data in RAM, too. If you will use the routines in ROM #8 to
handle the RAM, you need not to care about the detail rules.
(You can get the information about <the RAM file handling
routines in ROM #9 at the Chapter 8 and another technical
manual that has already been available by NEC HE in Chicago.
Please request it if you have not gotten it yet.) The last
half of this chapter describes how to use the routines in ROM
#3 from 2nd ROM, ROM #1, (Hereafter ROM #1 sometimes
represents 2nd ROM.)

If you want to make I/0 ceontrol routines and store
them in 2nd ROM, you have to understand Chapter 9 to 14. If
you utilize the ROM #08°s I/0 routines, the last half of this
chapter and another manual will help you. .

- 27 -

HOW TO USE 2ND ROM

3.1 CONSIDERATION OF INTERRUPT

Basically, PC-8281A has some interrupt service
routines in that system. The main purpose of interrupts are
smooth processing in Power off trap, reading data from
Bar-code reader, communicating through UART(RS-232C) and using
Interval timer.

The interrupt table is located in the zero page area.

i POWER OFF TRAP i NMI] “X0024 i
i BARCODE READER i RST 3.3 i “Xe82C '
i UART i RST 6.5 : “X0834 :
i INTERVAL TIMER i RST 7.5 ' “Xee3C]

The Interval timer interrupt has the highest priority,
and UART has the second one. The lowest interrupt is used for
Barcode reader. The reason why the internal timer has the
highest priority is to scan the key and to count the
auto-power off counter for saving the battery power. PC-8201A
has the 'Auto-Power Off' function®'. Usually, this function is
executed after 18 minutes has past since last key stroke was
detected. (This interval can be set by the °‘POWER®' command in
BASIC. Refer °"PC-82861A Reference Manual’'.) The interval .time
is used to count this period.

R The interrupt hook table is located from “XF386 to .
XF394. And that table is constructed in the following fig.

Interrupt hook table in RAM area

“XF386 POWER ON SEQUENCE
“XF389 BARCODE READER INPUT SEQUENCE
“XF38C UART INPUT SEQUENCE
“XF38F TIMER SEQUENCE and KEY

_ SCANNING SEQUENCE
“XF392 POWER FAILURE SEQUENCE

- 28 -

HOW TO USE 2ND ROM

3.1.1 Power Off Trap (ADDRESS “XA4CFA)

This interrupt is Non maskable. When power switch is
turned off, this interrupt occurs. The following sequence is
the algorism of this interrupt.

Disable the interrupt

Call hook table

Reset Key wait counter

Cancel Time counter

Out a data to the Auto power off port
HLT

COUBRWONP

The detail bit assignment of the auto power off port 1is
following.

PORT ADDRESS “XBA (0OUT)
81CSS port B

MSB + 7 + & + S5 + 4 4+ 3 4+ 2 4+ 1 4+ @ 1
Bit 7 - RTS output
Bit é —— DTR output
Bit S -—— BELL '
B8:Ring bell
1:Stop bell
Bit 4 — Auto power off |
@:0Fff
1:0n
Bit 3 -— DCD/RD select
Bit 2 ~ =—- Melody control
8:0n
1:0Fff
Bit 1 -—- LCD chip select #1
Bit @ -— LCD chip select #0
rf.Chapter 9 to 15 about more detail information of

this port.

- 29 -

R 4

HOW TO USE 2ND ROM
3.1.2 Barcode Reader
(ADDRESS “XF38% with Disable interrupt)

This interrupt is using RST 5.5. If you do
barcode reader program, this interrupt should do
So0oN .

- 38 -

not

use

"RETURN®

; .

HOW TO USE 2ND ROM

3.1.3 UART

(ADDRESS “X4EQQ with Disable interrupt)

This interrupt is using RST 6.5.
caused by UART.
interrupt occurs when the data
available.

(Serial com

munication
in 6492

This interrupt is
device 64082) This
receive buffer is

The algorism of this interrupt is shown below.

MSB

NOUTR_RWN -

PORT ADDRESS

¢ Disable the interrupt
Call hook table

Read data from 6482
Read error status from 6482
Xon/Xoff control check
SI1/S0 control check
Return to previous process

“XD8 (0oUuUT)
UART control port

] i 6 S + 4 v 3 + 2 1+ 1 1 6
Bit 7 —— Not used
Bit 6 -_— Not used
Bit S - Not used i
Bit 4 - Character length select #2
Bit 3 _— Character length select #1
Bit 2 —— Parity inhibit
@:Parity generation Check
1:Parity generation check,
Inhibit
Bit 1 —— Even parity enable
@:0dd parity
1:Even parity
Bit @ —-—— Stop bit select
@:Stop bit 1 bit
1:Stop bit 1.5 bit _
in case of DATA Length is S
1:Stop bit 2 bit
in case of DATA Length
is not S :

- 31 -

HOW TO USE 2ND ROM

PORT ADDRESS “XC8 (0UT)
UART data I/0 port - - 2

MSsB I 7

T 6 S 4+ 4 + 3 1+ 2 4+ 1 v 0
Bit 7 —— Data #7
Bit 6 —-— Data #6
Bit S —-— Data #S
Bit 4 - Data #4
Bit 3 —-— Data #3
Bit 2 - Data #2
Bit 1 -— Data #1
Bit © —— Data #Q

rf. Chapter 12 and 15 about more detail information
about UART. :

- 32 -

HOW TO USE 2ND ROM

3.1.4 Interval Timer (ADDRESS “X1EBE With Disable Interrupt)

This interrupt 1is using RST 7.5. This 1is the
interrupt from interval timer. (Timer device 1998) This
interrupt is also used for the key scanning.

In the system s initialization, +the interval timer
which is controlled by 1990, is set up as 4m second mode. The
port for 19968 is illustrated below.

PORT ADDRESS “XBg (OUT)

Calendar clock (1998) control port

MsB: 7 + 6 + 5 + 4 4+ 3 {+ 2 1 1 4 e i

Bit 7 - Not used

Bit é —_— Not used

Bit S —_—— Not used

Bit 4 — Data output

Bit 3 ——— Shift clock

Bit 2 — Command output #2

Bit 1 —— Command output #1

Bit @ —— Command output #0

Command #2 Command #1 Command #0

timing &4Hz
Timing 25éHz
Timing 2048Hz
TEST mode

POFPO®

e
,EO®

. In the initialization routine, the command is set up
as "X85. It means 4m second interwval.

rf. Chapter 15 for more information about 1990

' The following step is the algorism about interval
timer sequence. '

- 33 -

HOW TO USE 2ND ROM

Disable the interrupt

Call hook table

Mask RST 7.5,RST 5.5 '

Reverse cursor character for cursor blink
Key matrix scanning }

Return to the interrupted process

OUPWNE-
o® 06 00 o0 se o

_34-

HOW TO USE 2ND ROM
3.2 ROM SWAPPING METHOD

When you would like to use 2nd ROM, you must write the
following information into the: 2nd ROM s special reserved
area. The special reserved area is located from 7X0088 <+o
~Xee4rv. These area will be used for 2nd ROM starting jump
instruction and ID code, and the file name of 2nd ROM. This
name 13 displayed like a one of the RAM files on Menu screen
by 1st ROM, ROM #8. The following figure is the explanation
about 2nd ROM special reserved area.

the menu

ADDRESS CODE

“X8808 JUMP START 3 2nd ROM start address

“Xg003 :

“X0024 RET ; Non maskable interrupt

“Xe@e2C RET ; Barcode reader interrupt :
“X0034 RET 3 UART interrupt o
“Xee3C RET 3 Interval timer interrupt :
“X083F ; Reserved for RST interrupt §
“X0049 0B .Y . :
“Xee41 0B ‘B’ $ ID code for 2nd ROM f
“Xee42 DB “2NDROM’; File name which displayed in :

2nd ROM code

“X80848 START:
SPE CratcL RESARVED ADDRESS

If these data are implemented correctly, the name will
appears on the 1st ROM“ s menu screen. So it's easy to switch
the ROM and execute the program in it. When you want to start ,
the programs in 2nd ROM from the Menu mode of ROM #8, move the ;

cursor to 2nd ROM s file name on the screen. Then please
preass return key. The system will fall into the 2nd ROM
program.)

- 35 -

HOW TO USE 2ND ROM .

3.3 THE METHOD TO USE 1ST ROM ENTRY FROM 2ND ROM

If you want to use the routines in 1st ROM from 2nd
ROM, at the first, you have to create a special routine in the
higher memory location of RAM (°X8806-"XFFFF) and use it. That
routine switches the ROM bank with using bank switching method,
and calls the routine in 1st ROM. It is very important for you
that the interrupts must be disabled before you change the ROM
banks. And in addition, as the following sections will <tell
you, yYou have to change the hook table for Power down interrupt
that was changed by 2nd ROM to restart the current process in
2nd ROM program at next power-on. With this hook table for 2nd
ROM, the power down in RCM #8 will cause the fatal error.
Power-off interrupt can not be prohibited. And you have to
consider about the contents of the routine which you will call.
The reason is that some routines in the 1st ROM routine may
enable the interrupts in some parts of their code even if you
disable the interrupts just before switching the ROM banks to
call 1st ROM entry. Therefore you had better change the all
hook tables in the current book keeping area. I suggest that
all hook table should be replaced with previout contents which
were stored by 1st ROM, just before calling ROM bank-switching
routine ,and restored just after coming back from 1st ROM.

" The following progfam is the sample which uses 1st ROM entry
points from 2nd ROM. -

- 36 - 4 |

HOW TO USE 2ND ROM

Sample

TITLE

3'3'1

so all

Entry
Exit

WO WO PO VO VO VO VO VO VO VO VO VO we

-e

BNKCRL EQU
STATUS EQU

<{£ SYSTEM define label

Using 1st ROM entry from 2nd ROM

interrupt

This sample will enable to use 1st ROM entry from

2nd ROM.
- Some routines in 1st ROM might enable interrupts,

hook table should be replaced with RET code.
And restore them after done the 1st ROM calling.

CENTRYJ:1st ROM entry address
for return condition of 1st ROM

>>>
“X8A1
“X9A0

s <K Main routine >>>

ORG

ROM1ST: SHLD
LXI
PUSH
LHLD

PUSH
LHLD
PUSH
DI
IN
ANI
ouT

EI
POP
RET

; <<£ Return

RET2ZND: PUSH
IN
ORI
ouT

POP

“X8009

WORKH
H,RET2ND
H

ENTRY

H
WORKH
PSW

STATUS

“B11111118
BNKCRL

PSW

from 1st ROM 55>

PSW

STATUS
“B0086G80661
BNKCRL

PSW

- 37 -~

| we e Ve Ve We VO W VO We Ve Ve VS We Ve Ve we we

we we we e W we we

Bank control port
Bank status port

This routine must be stay
“X8008~-*XFFFF

Save register HL

Return address from 1st ROM
Push stack top

Pick up 1st ROM entry
address .

Push stack top

Restore HL

Save all register

Disable interrupt

Get current bank status
Switch 1st :ROM data set up
Bank select

Now “XB8888-"X7FFF are

ist ROM

Enable .interrupt

Jump 1st ROM entry

Save all register .

Get current bank status
Switch 2nd ROM data set wp
Bank select

Now “XB8Q8Q88~"X7FFF are
2nd ROM
Pick up all register

HOW TO USE 2ND ROM

RET
; << SYSTEM WORK AREA >>»>
ENTRY: DW L]
WORKH: DW “X8900

END

_38-‘.

e

“>e we

1st ROM entry address
HL register saving area

HOW TO USE 2NO ROM

3.4 SEQUENCES IN THE 2ND ROM

1.

INITIALIZE

T " This sequence sets up ESP](Stgék Pointer),
power—on trap and other interrupt routines. Then it
copies the book-keeping area and system area. finally

some peripherals will be initialized by this routine.

RETURN TO MENU

At the first, this sequence selects the standard
RAM, RAM #8 and resets the power—off trap. Then it jumps
to 1st ROM s menu mode.

POWER DOOWN
: When power 1is turned off, the Eontro] is
tranaferred to this sequence. In this sequence, you must

save all registers and circumstances which should be saved
in the stack. So the stack—pointer is most important to

. resume the current processing on the next power-on.

The RAM bank number is always stored in RAM #0,. Cn
turning on, the 1st ROM and RAM #8 is selected
automatically. And the bank—-switching procedure will be

called in Power on sequence if the number of the RAM bank
was not 1identical to the RAM #38 in the power down
sequence. After changing the RAM bank, all registers will
be restored and pending procedure will be resumed.
Therefore in the stack, the address of the process which
was abandoned by Power down trap should be stored.

In addition, in order to resume the abandoned process
with 2nd ROM, you have to do special power on/power off

sequence. In power off trap, you should the set the start .

routine of the special power—on sequence which switches
the ROM bank. I recommend to use the hook, “XF38F.
Usually, "JUMP +to POWER FAIL SEQUENCE® command is stored
here. In 2nd ROM, however, you have to rewrite this hook
table and call the special power down routine here. In

- 39 -

HOW TQ USE 2ND ROM

it, the address of special power—on routine on the stack.
In this case, the following information should .be stacked
before "HLT®' command is executed.

resuming address

starting address of
the ROM switching
routine

Contents of Pointers .
. {—— [STAKSVI]

CSTAKSV] keeps the SP’s value at "HLT".
Fig 3.1

POWER ON

At the first, the initializing routine in ROM #9
checks the RAM bank number in BANK (°XF3DB) when power—off
was executed. When power—off was done in non—-standard RAM
bank, RAM bank=-switching routine is called and switched.
Then, the registers’ contents will be restored. If the
address of the process which should be resumed was
stacked, the address will be picked up and executed. When
the pouwer-down was detected in ROM #1, the address of the
special ROM switching routine ought to be stacked above
the address of the process should be resumed. Therefore,
after zuitching the ROM, the abandoned process will be
resumed.

- 498 -

HOW TO USE 2ND ROM

control

routine

The following figure are the general 2nd RCOM

sequence.

mode of 1st

MENU

(== om =

- select 2nd ROM

e e me s Sn wE e wn BEm v e o e GG B S-S am S mm m-
- - -

i-Return

RETURN
ot
POWER ON .

+=Turn off power switc

Main routine of 2nd ROM'
POWER DOWN

INITIALIZE

pouwer switch

1=Turn on

~

D

OFF

POWER

Fig 3.2

-41_

ST TR R

HOW TO USE 2ND ROM

3.5 SUMMARY -- IMPORTANT NOTICE

If you want to make 2nd ROM program, you should take

care of the following manner.

il.

Interrupt vector

If you do not want to use interrupt, all interrupt
table should be set with only °‘RET' code, But I suggest
you that you had better use interval timer interrupt,
because of saving the battery pouer by using auto power
off function. The counter for this auto power off
function 1is counted by this interval timer interrupt. If
you do not use this function, the battery consumption may
be more larger than now.

Bank of RAM

Do not switch the ROM bank when PC, Program
Counter, points a routine in that ROM. You can guess the
reason and it‘’s not so hard to imagine these bank
switching will cause the fatal problem for system. At the
worst case, the all files which you stored will be lost.
And also you should be careful in stack area, too.

PC-8281A book keeping area
The book keeping area are very important for this

system, sSo you never change that area without careful
consideration. Please read Chapter 7 "BOOK KEEPING AREA®.

Power on/off sééuence
Please use power off interrupt to detect the perr

douwn. I suggest that you had better use the real time
interrupt service to poll the power down signal.

- 42 -

HOW TO USE 2ND ROM

: If you want to use 1st ROM entry from 2nd ROM, please
take care of the following point. The all routines rewrite
some work area sometimes. So, if you use 1st ROM entry from
2nd ROM without understanding that routine’s internal
specification, the system might be crashed. In addition,
interrupts and 'stack area are other important points. Refer
to 2.3 'The method to use 1st ROM Entry from 2nd ROM® and its
sample program. _

- 43 -

HOW TO USE 2ND ROM

3.6 SAMPLE

TITLE 2nd ROM sample header and useful routine

;3 << SYSTEM define label >>>

BANK EQU “XF308 3 Bank save area
ATIDSV EQU *XF382 :

PWHOK EQU *XF386 : Power on hook table
RSTSS EQU “XF389 3 Rst 5.5 hook table
STAKSV EQU “XF9AE :

AUTOID EQU “X9CceB H

SAVSTK EQU “XFADO H

STATUS EQU “XAB ; Bank status

BNKCRL EQU “XA1 : Bank control

PWPORT EQU “XB88 ; 81C55 chip select
PORTB EQU “XBA ;s 81CSS port B

FREE EQU X???7? You must set your ram

free portion address
3 <K Main routine >>>

ORG “X00090
START:

JMP INIT t 2nd ROM start address

ORG “X8824 : Non masEable interrupt
;s table

JMP POWER ;s Pouwer down trap

ORG - “Xee2C : RST 5.5

JMP BARCOD s Barcode reader interrupt
s table .

ORG “Xgg34 s RST 6.5

JMP UART s UART interrupt table

ORG *X993C $ RST 7.5

JMP TIMER s Timer interrupt table

ORG “X0049 s ID code for 2nd ROM

DB ‘AB’ ; AB is ID code for 2nd ROM
DB ~ “2NDROM’ File name which

we we

displayed in the MENU

3 <K Initialization of 2nd ROM program >>>
INIT: LHLD SAVSTK ;s Set stack pointer

- 44 -

HOW TO USE 2ND ROM

SPHL

CALL

CALL
JMP

SETTRP

HINIT
MAIN

o we We we we we

; <{<{ Hardware initialize routine
HINIT: RET

X we we wo wo we

AIN:

{<< Set up hook >>>

Set up hook table for 2nd ROM

SETTRP: MVI

e M

) we
(@)
oM

0 we wo weo we we

TBL

ouT
LXI
LXI
MVI
CALL
LXI

LXI

LXI
CALL
RET

J <~ CHL]

MOV

STAX -

INX
INX
DCR
JINZ
RET

MVI
ouT

A, “BB00000G1
BNKCRL '
H,DTBL

D, PWHOK

B, TBLEND-DTBL
COPY

H, TBLHOK
D,FREE

B, HOKE-TBLHOK
COPY

A,M
0

H

0

B
COPY

these part are interrupt hook

EQU

%
A, "B0000BBA1

BNKCRL

- 45 -

.
’

{<<-MAIN ROUTINE OF 2ND ROM >>>

WO VO VO We Ve W Ve We W wWe Ve

VO WO We WO We B we

Set hook for resume
2nd-R0OM’s program,

and other routine into RAM.
Hardware initialization
Goto main routine

>

Main routine

Select standard RAM
Select!

Set some codes into RAM
for power on sequence

Return code table
Free area of RAM portion

Set length

Read CHLJ
Save [DEJ]

Next address set
Decrement counter
Loop until done

The following code will be copied in RAM
portion for re-power on sequences

table.

These code will be
copied intc RAM
Bank select!

HOW TO USE 2ND ROM

Jump power on trap

JMP PWON ;
BANKI: OS 1 ' ;
TBLEND EQU $ ’

The following code will be copied
in RAM portion for return 1st ROM

® We Vo weo

: .
TBLHOK EQU $
RETSB: XRA A $ Clear A :
ouT BNKCRL 3 Select 1at ROM and
$ standard RAM
JMP X098 ;s Return!
HOKE EQU $
;s <<< RETURN >>>
RETURN: MVI A, "BOB9000BG1 ;s Select standard RaAM
ouT BNKCRL H
MVI A, "BPB006G00G H
STA BANK H
LXI H, “X8668 $ Reset
SHLD ATIDSV H
LXI H,RTBL $ Rewrite code table
LXI 0, PWHOK { Interrupt hook table set
LXI B,RTBLE-RTBL : Set length
CALL COoPY H
JMP RETSB $ Return to 1st

ROM’s menu mode

The following code will be copy
in standard ram portion.

A ve we we wo

TBL EQU $
RET
NGP
NOP
El
RET
NOP
RTBLE EQU $

Power on hook

RST 5.5 hook

;3 <K Power on >>>
PWON: CALL HINIT

LDA BANKI-DTBL ; Select old RAM bank
ouT BNKCRL ;

LHLD STAKSV ; Restore stack pointer
SPHL H

PoP PSW H

POP B H

- a6 -

HOW TO USE 2ND ROM

POP D H
POP H H
RET $ Resume old program

; <<< POWER DOWN TRAP >>> :
POWER: PUSH PSU

’
IN PWPORT 3 Read power down port
ANA A 3+ Check
M NTPWFL 3 No power douwn
POP PSW H
DI s Disable interrupt
PUSH H ' : s Save HL
PUSH D : s Save DE
PUSH B : Save BC
PUSH PSW ;s Save AF
LXI H, “X00088 $
DAD SP { Now I know stack address
SHLD STAKSV ;3 Save stack
MVI A,8FFH ; Reset interval ‘timer
s counter
STA PWRINT ;i Set up for next power on
IN - STATUS $ Save current RAM bank status
} When power on resume,
remember
; this and select RAM bank.
MoV B,A ${ Save it
MVI A, "BOGB00G0O1 ; Select standard RAM
ouT BNKCRL 3 Select!
MOV A,B { Resave old status
STA BANKI~-DTBL H
MVI A, "B00980001 ;i Select RAM bank 1
ouT BNKCRL ;
MVI A,Q ; Set up to come back
$ to 2nd ROM
STA BANK : ' A
LXI H,AUTOID H
SHLD ATIDSV 3
IN PORTB H
ORI “B00010000 H
ouT PORTB 3
HLT $ Never go on
NTPWFL: PGP PSW H
’

RET

: <<{<{ BARCODEREADER interrupt >>>
BARCOD RET ¢ Return socon

HER € €4 UART interrupt >>>

- 47 -

HOW TO USE 2NDO RCOM

UART: RET 3 Return soon

$ <K< Interval Timer interrupt >>> :
Pick up timer value

TIMER: LDA PWRINT :
OCR A 3 ‘Decrement!!
STA PWRINT $ Save it
RET :

3} <K System work area >}>-

PWRINT: DB “X8FF Timer counter n % 1/256Hz

we

END

- 48 -

CHAPTER 4
HOW TO USE 2ND/3RD RAM

When you want to change the bank of ‘RAM, the most
simple method is to do OUT instruction and to jump “X8888 for
warm start. Because book keeping area management is too
difficult to do by yourselves, I think. But if you would not
like to do warm start, you must manage the book keeping and
system parameter by yourself and use the special RAM bank
handling routine. You can easily guess that when the bank of
RAM is changed, PC, the program counter must stay lower than
*X7FFF. Because bank switch is completely change the code of
.RAM which address “X8808 to “XFFFF. But the area from “X8 to
“X7FFF is used for ROM. The only one way is to make a special
RAM bank switch routine in all RAM banks with same address.
The following illustration will help you to understand. this
curious method.

i PCP HL i + POP HL i sPick up return address
i MOV A,NEXT 1 I MOV A,NEXT ! ;set next bank status
I ouT “Xa1 ! 1 OUT “XAl ! 3change bank
i PUSH H i 1 PUSH H i 3 set return address
i RET HE i sreturn to specified addres
RAM #0Q RAM #1
Fig 4.1

Same routine is stored in the same position of 2 RAM banks.

.Refer to next
section to write a program at another bank.

- 49 -

HOW TO USE 2ND/3RD RAM

In addition you must take care of the STACK POINTER »too.

- 58 -

HOW TO USE 2ND/3RD RAM

4.1 READ AND WRITE TO ANOTHER-RAM‘BANK

These are two methods to read /write another bank of
RAM. The first is more simple than second one. But the first
method is some limitation of that performance, because this
method ‘uses ROM #1. And the second method is more complex,
but this is more powerful. The size of the second method is
longer than the first one.

4.1.1 Method 1 CUSING 1st ROMI

These are very useful routines in the lst ROM. These
are GETBNK and PUTBNK.

4.1.1.1 GETBNK L["X7EEC3]

This routine reads one byte from other banks of RAM.
The GETBNK routine temporarily changes the specified RAM bank,
reads a byte pointed by CHL], and returns to the original
bank. Interrupt should be disabled before calling the GETBNK
routine.

Entry C[BJ1 = Bank number
“X80:Main bank
“X08:Bank #2
“XB8C:Bank #3
CHL] = Address which byte to read

Exit D] = Byte data which read

Al tered registers
CAl,CC31,CD3,CF1

- 351 -

HOW TO USE 2ND/3RD RAM
4.1.1.2 PUTBNK C~X7EEBJ

The PUTBNK routine wirites one byte at the specified
address pointed by CHL] in the specified RAM bank. Similar to
tihe GETBNK routine, original bank will be selected after
writing that data. Before using the PUTBNK routine, interrupt

should be disabled.

Entry [B] = Bank number
“X08:Main bank
“X88:Bank #2
“X@C:Bank #3
CHL] = Location where the byte is stored
"[D] = Byte data to be stored

Exit None

Altered registers
cAl,CC1,CF1.

_52-

HOW TO USE 2ND/3RD RAM

4.1.2 Method 2 CUSING YOUR ORIGINAL CODEJ

When your code 1is located in upper address
(“X8880-"XFFFF), and you want to read/write a lot of data in
another bank of RAM, you had better change the target RAM bank
at the lower position of the memory.

(1) Your code is in RAM #1. And data you want to
read or write is in RAM #2.

“XFFFF - -
i Your I | RAM
{ code | | H2 H
~X88020
. *X7FFF —~=—————e
i ROM |
“X80B8 ———————=
(2) Change the Bank.
*XFFFF ————————s
i Your |
1 code |
H 1=
“X80BQ —mmmmm——m 'Hand] e
“X7FFF —===————- ! some
' i | data
' RAM #2: |
H 1 {-=
“gB808 ————————-
Fig 4.3

- 853 -

HOW TO USE 2ND/3RD RAM

(3) Then change again into previous
Bank configuration.

In this case, .you have to disable to all interrupts
before changing the BANK.

- 54 -

HOW TO USE 2ND/3R0 RAM

WUhen your code is ~ located lower addres
("X08088-"X7FFF), for -instance, running a program in 2nd ROM,
please use next method to handle the data in other RAM banks.

(1) The program in 2nd ROM is running with RAM #1.

“XFFFF
| standard! | ! :
: ! 1 RAM H
i RAM P W2 '
“X8000 —- —
*X7FFF
! 2nd H
i ROM '
H :
“X0000
Fig 4.4
(2) Read or Write RAM #2 by bank switching
during all interrupts prohibited.
“XFFFF .
i RAM i ' RAM '
HE \ 1standard |
*X80060
“X7FFF
i 2nd :
i ROM :
“X8809 —————————e
Fig 4.5

(3) Switch again, and resume the previous processing.

- 55 -

IRD RAM

TITLE Read Ufite routine for another BANK of RAM

This sample will access another bank of RAM.
There are two routines in this source program.
One is having access in byte by byte by using

The another one is to access in block of data to use
‘special bank switching.

In the architecture of bank, bank 1 (Standard RAM)
1s not able to be switch 1ou address
("X0BQQH~-"XT7FFF).

Entry HL:Address to be accessed
C :Bank number
Exit B :Data which be read
Entry HL :Address to be accessed
C :Bank number
Exit B :Data to be written
Entry HL:Start address to be changed
A :Bank number
DE:Start address in current bank
BC:Byte length to be read
Exit None
Entry HL:Start address to be written
A :Bank number
DE:Start address in current bank
BC:Byte length to be written
Exit None

Bank number

Bank #1 (Standard RAM) :"X00
Bank #2 (RAM #2) :"X08
Bank #3 (RAM #3) : “X8C

{STEM label define >>>

EQU “X8A1l s Bank control port
EQU “XB8A8 ; Bank status port
ORG “X8000 s This program can be located
3 any place
3 This switch should be change
' 3 according to the situation
EQU -1 { High address (“X8888-"XFFFF)

-56_

HOW TO USE 2ND/3R0 RAM

SLOW EQU

g

;3 <K Byte access routine >>>

BYTER: DI
IN
PUSH

IF
ANI

ORA
ELSE
PUSH
MOV
RAR
RAR
MOV
POP
ANI

ORA
ENDIF

ouT
MOV
POP
ouT
El

RET

BYTEW: DI
" PUSH

IF
ANI

ORA
ELSE
PUSH
MOV
RAR
RAR
MoV
ANI

ORA
ENDIF

ouT

STATUS
PSW

SHIGH
“B1111@0@11

c
PSW
A,C

C,A

PSW
“B811111108
(o

BNKCRL

B,M

PSW
BNKCRL

STATUS
PSW

SHIGH
“B811116011

C

PSUW

A,C

C,A
"B11111109
C

BNKCRL

- 57 -

>0 e weo

we we we .

WO We We Ve We We we we we

. we e we WO we WO Ve Ve we

e we Ve we Ve we we Ve we we we

we

Low address (~X8000-"X7?FFF)

Disable interrupt
Read current bank status
Save current bank status

Clear high address of bank
switch
Set new data of bank

Save current bank
Pick up new bank data

Shift 2 bit

Reatore bank data

Pick up current bank
Clear low address of bank
switch A

Set new data of bank

Select new bank!

Read data from some bank
Pick up before bank
Select before bank
Enable interrupt

Disable interrupt
Read current bank status
Save current bank status

Clear high address of bank .
switch
Set new data of bank

Save current bank
Pick up new bank data

Shift 2 bit

Pick up current bank
Clear low address of bank
switch 4

Set new data of bank

Bank switch!

HOW TO USE 2ND/3RD RAM

MOV M,B ; Write data

POP PSW $ Pick up before bank
ouT BNKCRL ; Select before bank
EI s Enable interrupt
RET ;

;s << Block access routine >>>

BLOCKR: DI s Disable interrupt
PUSH B 3 Save length
MOV C,A : Set up bank number
IN STATUS ; Read current bank status
STA CURBNK 3} Save current bank
IF SHIGH
ANI “Bi11110011 $ Clear high address of bank
;s switch
ORA C 3 Set new data of bank
ELSE '
PUSH PSW 3 SAve current bank
MOV A,C 3 Pick up new bank data
RAR ; '
RAR s Shift 2 bit
MOV C,A $ Restore bank data
POP PSW s Pick up current bark
ANI “Bi11111100 ; Clear low address of bank
switch :
ORA c ; Set new bank data
ENDIF '
POP B s Pick up length
NEXTR:
LDAX 0 3} Read data
MoV M,A ;3 Write data
INX 0 H
INX H 3 Next position of data
0CX B $ Decrement counter
JNZ NEXTR s Loop until done
LDA CURBNK ;3 Set previous bank
ouT BNKCRL $ Select previous bank
EI » 3 Enable interrupt
RET 3
BLOCKW: DI . ; Disable interrupt
PUSH B ; Save length
MOV C,A ; Set up bank number
IN STATUS $ read current bank status
STA CURBNK ; Save current bank
IF SHIGH)
ANI “B11110011 i Clear high address of bank

- 58 -

HOW TO USE 73RD RAM

SWwit

IRA C

LSE

'USH PSW

-'QV A,C

AR

- AR

oV C,A

'oP PSW

WNI “B111111006
sSwitch

JRA C

INDIF

> B
NEXTW:

MOV A,M

STAX D

INX H

INX O

DOCX B

JNZ NEXTW

LDA CURBNK

ouT BNKCRL

RET
3 <K $=tem work area >)>
CURBNK: DB - “X00

END

- 59 -

e Ve we We we e we weo

we

O WO W wWe o e

Set new data of bank

Save current bank
Pick up new bank data

Shift 2 bit

Restore bank data

Pick up current bank
Clear low address of bank

Set new bank data
Pick up length

Pick up data
Write data

Next position of data
Decrement counter
Loop until done

Restore previous bank #
Select previous bank

Current bank data

CHAPTER 3
UNDERSTANDING THE RAM FILE CONCEPT

5.1 SUMMARY

Usually, the RAM files are controlled by the ROM #0,
settled in ROM socket #0 at the shipment. There are many
rules to use the RAM file. Unless you replace this ROM #4d
with your own ROM, ROM #0 checks the RAM file organization and
pointers in the bookkeeping area sometimes, even if you don’t
use BASIC, TEXT or TELCOM. (For instance, at Power on and
"Bank’ command in menu.) If you ignore the standard rules for
RAM file handling, ROM #0 will flush not only the files uhich
were made by your own application program ,but also the files
which were made by BASIC and TEXT in ROM #38. In order to save
your files from such kinds of accidents, please read following
chapters about .the RAM file handling and understand the
standard rules in PC-8201A.

The two situations were considered for this section.
Someone wants to handle RAM files with the machine language
subroutine in the BASIC mode. In this case, opening the file
will be done by a BASIC command, CPEN. And the file will be
closed and deleted by CLOSE and KILL command in BASIC. So the
machine language subroutine will make wup the lacking
facilities in BASIC commands. For instance, Insert a data at
the middle of the opened file. In this case, you had better
care about a few pointers only. You needn’t know the
directory structure. '

But another person might try to make a his (or her)
original application program without using BASIC. He (or She)
. might open a file, save data, append data, insert data, delete
data and erase a file with his (or her) own applicaticon. In
this case, the name of the data file should be registered by
that application program. So that programmer need to know the
Directory configuration and many parts of the pointers
playing.

- 69_-

UNDERSTANDBING THE RAM FILE CONCEPT

]

This section is written for supporting both of them.
The programmer who wants to make a original application
without BASIC, needs much more information <than a user who

uses BASIC. But too much data sometimes confuses a novice
programmer who wants to make a ‘subroutine for BASIC main
program. After long consideration, I decided to obey the

famous common saying, ‘The greater serves for the lesser'.
Therefore 1 serve everything what I know. Please find what
you want to know in the following section.

In these chapters, I tried to describe each section

independently. You, however, might meet unknown words
sometimes. Please refer to another section or another chapter
at that time. I hope you will make many good apelication

programs with this document.

61

UNBERSTANBING THE RaM FILE CONCEPT

S.2 WHAT IS RAM FILE?

In PC-8201A, you can have many files in RAM area at a
time ,like files on the floppy disk. The files are classified
into three suffixes:.D0(cument) ~,BA(sic) and .CO0(mmand) .
Hereafter .DO0(cument) file 1is abbreviated DO file, BA(sic)
file is BA file, and .CO(mmand) file is CO file. And
sometimes the word "ASCII file' is used in place of "DO file"'.

5.2.1 DO File (ASCII File)

) The DO file is created by BASIC, TEXT and TELCOM. Of
course, you can load. a DO file from I/0 in menu mode. In
BASIC, the °‘OPEN® command handles the DO file. The OPEN
command with'FOR OUTPUT® option makes a new B0 file. OPEN
with °FOR APPEND' opens the DO file ‘in order to add the data
after the last data that has already been entered. When there
is no file whose name is same as the specified in the ‘OPEN’
with °"FOR APPEND® that OPEN command works as the OPEN with
FOR QUTPUT. The OPEN with FOR INPUT opens the speczfzed file
to be ready for sequential reading.

The °SAVE® command with °,A° option or °SAVE' command
with the file descriptor followed the suffix, '.D0' stores a
BASIC program as a DO file. This DO file 1is, sometimes,
called as ASCII (saved program) file. (Note: A SAVE command
without ',A" option creates a BA file.) In this case, the
BASIC program in the BASIC files area is saved into the DO
files area in the ASCII format. So you can read it in TEXT
mode.(*SAVE' command without °",A° or without the suffix, '.DO°
only registers the file name with the suffix, '.BA" and
changes some pointers. It does not make a new file. Please
refer to next section about BA files. And I think almost
BASIC interpreter have this °ASCII save function®’ for the disk
files. Refer to BASIC reference manual if you have anocther
disk top personal computer’s manual.)

- 82 -

UNDERSTANDING THE RAM FILE CONCEPT

Upper

———)

DO files

non-registeredi
BASIC programi
or
saved BASIC
program
‘A.BA°

Lower

L o= -

{-= TXTTAB

Type BASIC program in BASIC mode.
Do °"SAVE®' command.

SAVE °TEST',A

or -
SAVE °TEST.DG®
H ' iUpper
i DO files : H
! TEST.ODG 1{—— New DO file

is inserted

non-registered: V
BASIC program:
or -
saved BASIC
program
'A.BA°

Lower

- - em —- s mw e w-

-= <-= TXTTAB

Fig 5.1 SAVE with *'.D0" or ",A" option

- 63 -

AUNDERSTANDING THE RAM FILE CONCEPT

i, vy

—

There are 2 type of hidden DO files in PC-8281A. One
is the °SCRAP®' file used in TEXT, and another is the ‘EDIT®
file used in BASIC. The screen oriented text editor in
PC-8281, named TEXT, has wonderful functions called °"CCP°’.
The CCP functions mean SELECT, CUT, COPY and PASTE. (The
detail information about these functions are explained in the
PC-8281A user’'s guide.) The CUT command or COPY command after
SELECT command makes a temporary DO file. This DO files can
be invoked by PASTE key many times. Though this file cannot
be found in menu level, this file will be kept until next
SELECT-COPY or SELECT- CUT u1ll be executed and is not broken
by the PASTE key.

And more good feature is in this DO file. Since the
contents of this DO file is treated as the data from keyboard,
this file can be used in BASIC. After saving a part of a file
in SCRAP with SELECT-COPY function, return tc Menu, and invoke -
BASIC. The contents of <this “SCRAP®° file will appear by
"PAST® key. (In the PC-8201A user’s guide, this temporary 0O
file is called 'PASTE buffer'.) .

Another one, ‘EDIT® file, is created by EDIT command
in BASIC. The EDIT command in BASIC falls intoc the TEXT
editor with the BASIC file. At that time, the BASIC program
is translated in to ASCII format file, "EDIT', and original
BASIC file is killed. This file is erased when the EDIT mode
is finished by double ESC or F.S, converted into BASIC file
and saved. So no one can find this file at the menu level.

The DO file usually consist of the "ASCII® characters.
And you cannot use the 3 Control Characters, NULL (3),
Control=Z (26) and Back Space (127). (The ‘Control-Z° is
sometimes abbreviated as "“Z°.) The Control-=Z is used as the
End of DO file. So if you store it as a one of the data in
the middle of the DO file, the standard programs, BASIC, TEXT
and TELCOM ,will regard that Control-Z as the End of <that 00
file. The data after that Control-Z will be lost. Otherwise
the NULL is used to fill the hole dug by MAKHOL. After
copying or inserting the data in to the hole, some routines
tries to find the end of the data by finding the NULL. Then a
routine sqgueezes the NULLs. Therefore the NULL in the middle
of the DO file might cause the seriocus problems. similarly,
the Back Space has special meaning in DO file. Please don’t
use there three Control characters in the DO file. BASIC s
EglﬁT]# command cannot save these contro] characters in to the

lle. .

NOTE: MAKHOL and MASDEL are name of the routine

- 44 -

UNDERSTANDING THE RAM FILE CONCEPT

stored in ROM #8. Refer to "Useful Routines for RAM
file handling in ROM #G3°.

ex. When 00 file is made. in PC-82081A

1.
2.
3.

TEXT always creates and modifies DO files.
SAVE command with *,A" creates a DO file in BASIC.

UPLOAD and DOWN LOAD sends or receives a [P0 file
through RS-232C in TELCOM.

DO file can be saved or loaded from CASSETTE and
RS=232C in MENU. '

OPEN with °"FOR OUTPUT® registers the file name and

insert only End of file character as the DO file
in BASIC. .

-65_

UNDERSTANDING THE RAM FILE CONCEPT

5.2.2 BA File
The BA file is made in BASIC mode or made by LOAD

function in Menu mode. There are two types of BA file in
PC-8201A. One is a "saved® BASIC. program, and another is
‘non-registered’ BASIC program. Sometimes the

‘non-registered’ is called the ‘un-saved’ BASIC program,
because ‘un-saved’ will make sense more than 'non-registered’
for a person who knows BASIC very well. The BASIC program
typed just after selecting BASIC mode in menu level, is called
‘non-registered’ BASIC file, since the name of the program has
not been registered in the directory area yet. But after
executing ‘SAVE®' command in BASIC mode, that ‘non-registered’
BASIC program becomes a “saved®’ BASIC program. (In the point
of view, 'SAVE' command in BASIC, the word ‘un-saved’'. and
'saved” are suitable, I think.) The °"SAVE®' command in BASIC
‘register’'s the file name and the starting address in the
directory area. Then the file name can be seen on the display
screen of the MENU or by 'Files’' command in the BASIC mode.

Meanwhile the °‘L0OAD® function in MENU can create a
‘saved’ BA file directly. The °‘LOAD° function can read a
BASIC program from the cassette, and can ‘register’ its name
in the directory area. So after ‘LOAD’ing in Menu, the
program name appears on the Menu screen.

ex. The flow diagram of making BASIC program
1. Selegt BASIC in menu level
2. Type BASIC program

16 PRINT °HELLO®
20 ENOC

3. !n this point, this BASIC program 1is called
non-registered’ program.

4. If you return to menu level now, this program is
reserved. You cannot find this program in Menu
mode in this time. Next time you select BASIC 1in
menu mode, LIST command shows you this program
again. This program will be kept unless you do
NEW command, LOAD ASCII saved file in RAM or LOAD.
a file through 1/0, cassette and RS-232C.

S. Do 'SAVE® command.

SAVE °"TEST"
or

66

UNDERSTANDING THE RAM FILE CONCEPT

SAVE °‘TEST.BA"™
(SAVE °"TEST.DO®
or
SAVE °'TEST®,A has another meaning.)

6. Then ‘non-registered’ program becomes a
'registered’ program. This program is called 'BA°
file simply. And there 1is nothing in the
non-registered program area.

Just after doing SAVE, you can list the program with
LIST command. So you might be confused. But don’t worry
about 1it. The following illustration will help you to
understand not only why LIST command just after SAVE command,
can list the ‘saved’' program, but alsc why PC-82801A can have
many BASIC programs at a time, [hope.

6?.

UNDERSTANDING THE RAM FILE CONCEPT

1. You are in MENU mode

: i “XFFFF

{ 00 Files ?

: ' : ~XUUUU

5 saved BA file 5 _

: -2 <- BOTTOM
(*XF988)

Fig 3.2

2. Select BASIC in MENU and TYPE a BASIC program.
LIST shows you the non-registered BASIC program.

: i\ “XFFFF
! DO files !
' ~XYYYY
I non-registered!
{ BASIC program ! ,
== TXTTAB
4 H ¢ T XUUUU)
1 saved BA '
' file H
<{-- BOTTOM
Fig S.3

- &8 -

UNDERSTANDING THE RAM FILE CONCEPT

3. Return to menu by MENU command

E E “XFFFF
; DO files i
: : “XYYYY
E non-registeredE
E BASIC programi
: : “XUuuu
§ Saved BA file E
' - ¢-- BOTTOM
Fig 5.4 |
4. Se]eet BASIC again. LIST command lists the

non—-registered BASIC program which you typed in (2).

H ! “XFFFF
i DO files i

*XYYYY
1 non-registered.
i program :

_ ¢~ TXTTAB

H _ Vo (TXUUUWL)
i Saved BA files|
: - ¢-- BOTTOM

Fig 5.5

- 69 =~

UNDERSTANDING THE RAM FILE CONCEPT

S. SAVE °‘TEST®. TXTTAB still points the program typed in (2).
So the same list appears on the screen by LIST.

' ! “XFFFF
i DO files H
“XYYYY
i TEST.BA H
' - <~ TXTTAB
' ' ¢ *XUuUUw)
i Saved BA H
i files i
“X8000
Fig 5.6

- 78 -

UNDERSTANDING THE RAM FILE CONCEPT

6. MENU and Select BASIC again or execute NEW command in BASIC.
Now, LIST command lists nothing. Type new BASIC program,
again. LIST lists the program that you typed just now.

i ! “XFFFF
i DO files H
“XZZZZ
! non-registered!.
I program area |
: ~ <~ TXTTAB
: : (*XYYYY)
i TEST.BA : :)
*XUUUU
i Saved BA files!
<{-- BOTTOM

Fig 5.7

=71 -

UNDERSTANDING THE RAM FILE CONCEPT

e * ,
LOAD °TEST.BA' in this case, or select "TEST.BA®' directly in
MENU. LIST shows you the program, TEST.BA.

H \ “XFFFF
"1 DO files :
*XZZZZ
i non-registered!
H program :
“XYYYY
! TEST.BA 5
: {- TXTTAB
' ' (“XUUUU)
i saved BA files!
<{-- BOTTOM

Fig 5.8

- 72 -

UNDERSTANDING THE RAM FILE CONCEPT

BASIC interpreter regardes that the current TXTTAB

indicates the current BA file. So LIST command lists the
program which was saved just now because of specified by
TXTTAB.

e

The BA file can be created in BASIC mode and can be
LOADed in BASIC mode and MENU mode. Refer to the PC-8281A
user’'s guide and reference manual. And BA file is executed
with BASIC interpreter at the menu level by selecting the BA
file directly, as you know. In other words, when you select
the BA file name appeared on the MENU, PC-8201A invokes the
BASIC interpreter, LOAD that BA file and RUN it automatically.

UNDERSTANDING THE RAM FILE CONCEPT

5.2.3 CO File

: The CO file is made in BASIC with BSAVE command or can
be loaded and saved from the cassette tape in MENU mode. The
CO file is, sometimes, called 'machine language®' file. It can
be executed directly like a command in menu level,uwhen
‘Execute’ address was specified in BSAVE and the start address
is higher than the second parameter in the latest °‘CLEAR’
command in BASIC. The default value is “XF388. So no CO file
can be executed directly from the menu level without CLEAR
command. The CO files are located above the DO files.

- 74 -

UNDERSTANDING THE RAM FILE CONCEPT

S.2.4 The Order Of The Files In RAM
The order of these files in PC-8201A is fixed.

~XFFFF
i CO files :
i DO files H
| non-registered!
i BASIC program |
i BA files :
<{- BOTTOM

Fig 5.9 the order of the files in RAM

Of course, the size of each file is dynamic.

- 75 - | e

CHAPTER 6
DIRECTORY STRUCTURE

6.1 DIRECTORY CONFIGURATION PER ENTRY

The directory area is allocated in the middle of the

bookkéeping area. The top of the address 1is F84F

hexadecimal. The directory configuration is shown below.
DIRTBL: BASIC (=———==——v “XFSAF
FILER
TELCOM

NULDIR: (Directory for non-registered program)
SCRDER: (Directory for SCRAP)

EDTDIR: (Directory for EDIT command)

USRDIR: (Directory for user—defined files)

(¢ End-o%-directory)) “XFF

in

rf. The non-registered program means non—saved BASIC
. program. Refer to "BA file® in the previous section.
‘Directory for SCRAP®' and °"Directory for EDIT command’

are explained in 'DO file".

Each slot in the directory consists of 11 bytes,

1

byte flag, 2 bytes address and 8 bytes file name. The first &
slots in directory area are initialized by INIT routine at the

COLD START.

- 76 -

L)

DIRECTORY STRUCTURE

Dirsr Slot’s configuration per entry

Diry flag (1 byte)
Adcfield (2 bytes)
File (8- bytes)

" Total 11 bytes.

Biisnment of Directory flag

Bi- Master bit (1 when directory valid)

Bij: ASCII bit (1 when ASCIlI-text file)

Bi Binary bit (1 when Machine-language file)
Bi File—in-RCOM (1 when file is in ROM)

Bi Hidden file (1 when file is hidden)

Bi

Bi RAM file open flag
Bi for internal use (always set to 9 normally)

vof address—-field

Re - Address which TXTTAB must be setnto
De - Beginning address of file
Ce - ditto :

KTTAB in BASIC shows the lowest byte of the file,
the firsink pointer in the BASIC program file. Please
refer to her manual to understand what °‘link pointer® |is,
if you w:© handle the BASIC programs.

‘nitialized values for first 6 slots in Directory
are shovelow. The first 3 files are stored in ROM and
displaye the menu screen. (These 3 files are called the
‘standarrograms’.) Next 3 files are used for hidden files
created AM area. These hidden files will not appear on
the Menueen. Refer to previous section, ‘DO file®' and 'BA
file'. ' characteristics: of these hidden files are

describeere.

- 77 -

DIRECTORY STRUCTURE | .

rf. First 6 slots in Directory (Initialized data
stored in “X6CS8E) '

08 “B1011099 X
ow Start address of BASIC
b8 ‘BASIC °
D8 e
0B “B1011606069
ou Start address of TEXT
08 ‘TEXT ! '
08 °)
08 “B181109066
. ou Start address of TELCOM
DB “TELCOM °
DB e

s for non-registered program

0B "B108901060

DwW)

08 9 :
08 “XXXXXXX’

_:For SCRAP file

08 "B11661060
ow e

D8 0

(0] “YYYYYYY’

;) for EDIT command of BASIC

OB “B@16610080
oW . 9

D8 @

DC *7Z777277°

APTER 7
RGANIZATION

M FILES
apter 2 to understand the whole of the

| are stored with the fixed order. It
lea, the BASIC programs which has the
{ at the bottom of the RAM area, near
CII files, the suffix is ".00°) are
files. And CO files, the Machine
CO0* are saved above the DO files, near
i1Tustration will help you understand

- 79 -

RAM ORGANIZATION

1. There are S files in RAM.

“XFFFF .
iBookkeeping :
\ Area :

'Free area &

iData area ‘Upper

i MACHIN.CO :

! DIARY.DO '

i MEMO.DO ;Louer

! GRAPH.BA Lol

: HERY

! GAME.BA :

H : 1 {- BOTTCM
Fig 701_

RAM ORGANIZATION

GOLF.

2.

Add new BASIC file,

Moved
up

MACHIN.CO

i DIARY.DO

MEMO.DO

<

1{== Added here

GOLF.BA

<

Not

GRAPH.BA

Changed

GAME.BA

- - e-

———D

Lower

Fig 7.2

_81 -

RAM ORGANIZATION

Add new ASCII file,

‘ADDRES.

3.

e mmee @ (L= == =k cm —a - |

MACHIN.CO

¢ == aa

Upper

Mo

DIARY.DO

MEMO.DO

<

{== Inserted
here

ADDRES.DO

<

! GOLF.BA

Lower

Not

changed

GRAPH.BA

v

GAME.BA

Fig 7.3

_82 -

RAM ORGANIZATION

Add new CO file, CHAR.CO

CHAR.CQO {== Inserted here

- -—)
|
|
N\
|
|
|

Upper MACHIN.CO

DIARY.DO

MEMO.DO

Not changed
ADDRES.DO

Lower GOLF.BA

& - -

GRAPH.BA

GAME . BA

A

Fig 7.4

A new BA file is created above the old BA files.
Otherwise a new DO file is stored below the lowest DO file,
just above the BA files. A new CO file is made just ABOVE the
CO files. (Just below the address which is pointed by VARTAB.
Refer to "Bookkeeping area’.)

- 83 -

RAM ORGANIZATION

And you know that the ndn-registered BA file 1is
created between the BA files and DO files, as described in °'BA
file®' of 'What is RAM files'.

eX.

Non-registered program is created just
under the ASCII file.

i ASCII1.DO '
' H Upper
! non—-registered!
| program :

! Lower
! BASIC2.BA | V

Fig 7.5 Position of non-registered program

-84 -

RAM ORGANIZATION

The detail information™ about
configuration 1is described in ‘Directo
bookkeeping area and the directory area ar
top of RAM area.

the directory
ry structure’'. The
e situated at the

~XFFFF <
“XF977 - .
i Directory areai! boockkeeping
: ' area
“XF84F H
“XF386 <

Fig 7.6 Directory position

- 85 -

RAM ORGANIZATIGN

- 7.2 BOOKKEEPING AREA N B

The book—keeping area is located at the top of the RAM
area. The area 1is divided into 3 parts. The first part,
lowest part from “XF388 to “XFBBF, includes the pointers and
flags for RAM file handling. And many BASIC interpreter’s
flags, pointers and temporary data area are here. As you
know, the directory area is included in this part.

The second part, “XFBCB8 to “XFE3F, is used for the
line buffer. of LCO display. BASIC wuse= this area in the
Screen Editor function, also. But the concept of this line
buffer 1is different from the VRAM in the traditional disk top
personal computer. Only the character c¢odes are stored in
this buffer. There is no attribute data. The attribute data
is stored 1in another table. Refer to the chapter 9,
explanation about the LCD driver.

The third part, “XFE48 to “XFFFF, is reserved by B8ICS.
The switches and data storage for RS-232C, Key Board and other
I/0 drivers are stored here. :

“XFFFF
i Part II1 ! BIOS s data
~XFEA4@ :
! :
1 Part 11 i LCD buffer
~XFBCO : '
: { BASIC s data
i Part I i File handling data
: i Directory '
“XF3806

Fig 7.7 Bookkeeping area

RAM ORGANIZATION

7.2.1 Part I (For RAM File Handling And BASIC)

NOTE:

In this section, the articles about the
pointers and flags for BASIC are omitted, because this
document is written for the programmer who wants to
understand the many good features in PC-8261A, in
order to utilize this machine with 2nd ROM or user’s
machine language program. Not written for the people
who wants to understand the internal specification of
PC-8201A’s BASIC interpreter. So I think this
document 1is unfriendly for such kind of peocple.
Please refer <to another manuals and textbook if you

need understand the BASIC interpreter.

There are many important pointers are stored in this
area for RAM file handling. When some of them are mis—-handled
in your routine, all RAM files might be deleted at next
operation of the standard ROM,RCM #8, for instance, power-on
or next SAVE command in BASIC. Because the standard programs
(BASIC, TEXT and TELCOM) and operating system (represented by
Menu), believe that these pointers point the right address.
So if a pointer which should point the lowest address of the
DO files, points one byte smaller than it should point
correctly, TEXT might not invoke any DO files in it. Please
understand the purpose of each pointer and make sure that each
pointer has a right value any time. '

The important pointers for RAM files are listed below.

ADDRESS (Hex) NAME SIZE (Decimal)
F380 FSIDSV 2
F384 HIMEM 2
F4359 STKTOP 2
F43D TXTTAB 2
F84F DIRTBL 33
F8709 NULDIR 11
F87B SCRDIR 11
F886 EDTDIR 11
F891 USRDIR 231
FoB@ - BOTTOM 2
FA9A MEMSIZ 2
FABF FRETOP 2

2

FAE1 : ASCTAB

8?

RAM ORGANIZATION

7.2.1.1

FAE3 BINTAB ‘ 2

FAES VARTAB 2
FAE? ARYTAB 2
FAE?S STREND 2
FBé&3 FILTAB 2
FB&7 ~ NULBUF 2
FSIDSV

ADDRESS “XF380

SIZE 2 bytes

Purpose First power on or not

If this FSIDSV is not identical with FRSTID
(°X8A4D), <the initialization routine falls into the

" "COLD START® routine. In this case, the all data and

7.2.1.2

files in PC-8201A are cleared. The - "COLD START®

routine sets FRSTID here after done the
initialization. And no one may not change this ID
valuye.

HIMEM
ADDRESS “XF384
SIZE 2 Byte

PURPGCSE Highest memory available memory

This pointer keeps the highest memory address
available for BASIC. The area between the address in
this pointer and “XF388 is reserved for the machine
language file or another user’s special working area.
No standard program will break the data in this area
except POKE statement in BASIC. (The °‘POKE® statement
can write on anywhere in the RAM which 1is selected
now. So be careful with the address in POKE statement

- 88 -

RAM ORGANIZATION

7.2.1.3

702.1'4

when you use it for storing your machine language
program or character data into RAM area.) The ‘HIMEM®
can be changed by the second parameter of °CLEAR'
statement in BASIC. Refer to the PC-8201A BASIC

reference manual.

TXTTAB

ADDRESS “XF45D
SIZE : 2 bytes
PURPQOSE Pointer to beginning of current

BA file

This pointer is wvalid in BASIC mode. In
another mode, TEXT or TELCOM mode, this pointer keeps
the latest value used in BASIC. In BASIC mode, the
address of the first link pointer is stored here. AnNd
this value won’t be changed in BASIC mode unless
‘LOAD' command is executed to load another BASIC
program, or NEW®' command. Almost internal routine
for BASIC interpreter refers to this pointer to know
the top of the current program. And this pointer is
very important when a BA file is deleted, too. You
cannot kill a BA file in BASIC mode when this TXTTAB
po%nts the BA file. Refer to "How to delete a BA
file®.

STKTOP
ADDRESS “XF4s9
SIZE 2 bytes
PURPOSE‘ Top location to use for the stack

Initially set up by INIT routine in ROM #0
according to memory size to allow for 256 bytes of
string space. This value will be changed by a CLEAR
command with the first argument. The difference
between MEMSIZ and STKTOP means total string space.

- 89 -

RAM ORGANIZATION

7.2.1.5

7.2.1.6

The 2 byte space between MEMSIZ and FILTAB is kept For
‘VAL® function in BASIC. The °‘VAL' function sets '9°
at the end of the strings on evaluating the strings.
So this 2 bytes area prevent to over—-write the FCB

area above the FILTAB.

DIRTBL
ADDRESS “XF84F
SIZE 33 bytes
PURPQOSE directory for program in ROM

The names and pointers for the programs in RCM
are stored here. They are BASIC, TEXT and TELCOM. If
you don’t want to use these standard programs, you can
use this area for your programs. This area will be
kept wuntil ‘COLD START' .is invoked. Refer to
‘Directory construction.’

NULDIR
ADDRESS - “XF87e
SIZE 11 bytes
PURPOSE Directory for non-registered program .
This area is kept for internal use. The

‘non-registered program’ that means the BASIC program,
Just typed after selecting BASIC, uses this area for

‘pointing the starting address. There is a detail

explanation about the 'non-registered’ program in the
?revious section, BA file". And also, refer to
Directory Construction'.

-98_

RAM ORGANIZATION

7.2.1.7 SCRDIR

ADDRESS “XF87B
SIZE 11 bytes
PURPOSE Directory for SCRAP
The TEXT editor can do °"SELECT®, °"CUuT®, °‘coPY’
and 'PAST . This directory is used for this

‘temporary file', SCRAP, in TEXT. This file is
created when some characters are °SELECT'ed and
‘COPY’ed or ‘CUT'. (Refer to PC-8201A user’'s guide
"SELECT", °"CUT", °"COPY®' and ‘PAST'.) This file is kept
even if you exit from TEXT. And you can use it in
another programs, BASIC, TELCOM and so on. If you CUT
or COPY without SELECT, the starting address points
Control-Z. It means that the SCRAP files is empty.
Refer to D0 file' and ‘Directory Construction’.

7.2.1.8 EDTOIR

ADDRESS “XF886
SIZE 11 bytes
PURPOSE Directory for EDIT in BASIC

The EDIT command in BASIC makes a temporary DO
file. This slot is used for this file. Refer to ‘DO
file® and "Directory Construction®.

7.2.1.9 USRDIR

ADDRESS “XF891

SIZE . 231 bytes
PURPQOSE Directory for user’s files (21 slots)

This area is used for BA files, DO files and
CO files which user makes. 21 files can be registered

-91-

RAM ORGANIZATICN

7.2.1.10

7.2.1.11

here at most. The end of directory area is indicated
by °“°XFF°®, 'Directorg search stopper’. Refer to °
Directory Construction .

BOTTOM
ADDRESS ~XF98@
SIZE 2 bytes
PURPOSE Bottom address of RAM

The lowest available RAM address 1is saved
here. You can know how many RAM chips are installed
in this RAM bank easily by checking this pointer.

MEMSIZ
ADDRESS “XFA9A
SIZE 2 bytes
PURPOSE Highest location in Memory

This pointer points the <top of the string
space. The area between the MEMSIZ and FRETOP+1 is
called "Used string space’, and the area between the
FRETOP and STKTOP +1 is °'Free string space’. ’

7.2.1.12 FRETOP

ADDRESS - “XFABF
SIZE 2 bytes
PURPGOSE Top of the string free space

The highest address (closer to “XFFFF) of the

- 92 -

RAM ORGANIZATION

string free area is kept in this pointer. The lowest
address is kept by STKTOP + 1. '

7.2.1.13 ASCTAB

ADDRESS ~XFAE1

SIZE 2 bytes
PURPOSE Pointer to start of ASCII files

This pointer points the first byte of the
Fzrst DO (ASCII) file.

7.2.1.14 BINTAB

ADDRESS : “XFAE3

SIZE 2 bytes
PURPOSE Pointer to start of COMMAND file

The lowest address of the first CO0 file is
kept here.

7.2.1.15 VARTAB

ADDRESS “XFAES
SIZE 2 bytes
PURPOSE- : Pointer to simple variable space.

This pointer keeps the start address of
VARIABLE TABLE area just above the CO files.

- 93 -

RAM ORGANIZATION

7.2.1.16 ARYTAB

ADDRESS ' “XFAE7?
SIZE 2 bytes
PURPOSE .Pointer to beginning of array table

_ The ARRAY TABLE is allocated just above the
VARIABLE TABLE. This points the beginning address of
this ARRAY TABLE.

7.2.1.17 STREND

ADDRESS “XFAES
SIZE 2 bytes
PURPOSE End of storage in use

This pointer keeps just above the address of
ARRAY .TABLE. The area between this pointer and the
stack pointer can be used as the FREE area.

Note:
When you will use this FREE area, you have to consider
about the stack area. As the stack pointer points the

current bottom of the stack area, you had better about
128 bytes for the feature stack operation.

7.2.1.18 FILTAB

ADDRESS " “XFBé3

SIZE 2 bytes
PURPOSE Point to address of file data

This points to the starting address of the

- 94 -

RAM ORGANIZATION

file data area. The file data area consists of the
FCB address. If "MAXFILES®' command in BASIC was not
executed after °COLD START®, this table has 4 bytes.
The first 2 bytes points the NULL files buffer.
(NULBUF points the same address.) The second 2 bytes
points the #1 file’s FCB address. Refer to the
following section about FCB.

7.2.1.19 NULBUF

ADDRESS “XFB&7

SIZE 2 bytes
PURPOSE Points to address of file #@ buffer

The buffer for file #B8 , sometimes called
NULBUF, 1is allocated just above the file data table,
pointed by FILTAB. :

- 95 -

RAM ORGANIZATION

| “XFFFF

Bookkeeping

{-—-- "XF380

User’s machine
area

or
Device code

1 {-= HIMEM

FCB 3

(#1 —— #n)
{=-- Address is
stored in FILTAB
! Nul buffer :
! (File #@) H
: 1 {== NULBUF
i FCB address H
: 1<{-- FILTAB
i (2 Bytes) '
i Used 1{-- MEMSIZ
! String area H
i Free 1{-- FRETOP
i String area |
{-- STKTOP

Stack area

{- Stack Pointer

Free area

{-- STREND

Array data

{-- ARYTAB

- 94 -

! Simple '
I Variables '
: '¢— VARTAB .
! CO files 5
; ' ¢(—— BINTAB
} DO files 5
3 ! ¢(-— ASCTAB
1 BA files 5
! ' ¢(—— TXTTAB
; ' (== BOTTOM

" 'ig 7.8 Pointers and ROM configuration

- 97 -

RAM ORGANIZATION

7.2.2 Part II (VRAM Area For LCD D

ADDRESS “XFBCO
SIZE 640 bytes
PURPOSE VRAM
This area is used for the VRAM of LCD (ligquid
Quristal Display). In this area, the data is stored

as the character code. (ANSI character code. Refer
to 'APPENDIX A4' 1in PC-8201A Reference Manual.) The
LCD driver, installed just below the LCD panel, gets
this character code and displays it on the LCO. The
320 characters (40 by 8) can be shown on the LCD
panel at a time. So only second 320 bytes, from
“XFDO9 to “XFE3F, are used for VRAM. The first 329
bytes , from “XFBD@ to “XFCFF, are used only when TERM
mode is selected in TELCOM. (You can find "PREV® at
the bottom of the screen in TERM mode. The °‘PREV®
shous you the previous screen in TERM mode. Refer to
‘Chapter 8 TELCOM® in PC-8201 User’s Guide. The
. *PREVIOUS® is the first TERM SUBCOMMANDS.)

The data in VRAM appears when LCD driver is
turned on. Refer to Chapter 9 about the control
sequence for LCD management.:

7.2.3 Part III (Bookkeeping Area For BIQS)

* ADDRESS “XFE48 —-- “XFFFF

. This area includes the data area for RS-232C
driver, the buffers relevant to Key Board driver and
working area for LCD driver. Refer to Chapter ¢ - 1S5
to know how to use the peripheral drivers and the data
in this area. . .

- 98 -

RAM ORGANIZATION

.

7.2.4 FC Control Block)

Ys the FILTAB points the lowest address of the
file conjata area. It does NOT mean FCB. The FILTAB
points th: of the starting address of the FCBs, FCB

Offset, ifile is opened.

eiB and FCB
F!"XFB&3) ====—- > *XFléA
Daory (in hexadecimal)

F:éE Fi ?7 F2 L 2 LR 2 LN J 0

Tkt 2 bytes (“XF1l4E) points the starting address
of FCB of #8 file (NULL buffer). The second 2
byXF277) is the top address of the FCB for the
fi. These starting addresses are called FCBOFF

(Fset address).

TFarea for NUL and file #1 are allocated by the
INITIALIZEine in ROM #8. The 2nd and more FCB area will
be allocatthe BASIC language, MAXFILES command. Refer
to PC-820%rence manual.

The FCB cg of 9 bytes parameter area and 256 bytes
buffer arcept for NULBUF. NULBUF consists of only 256
bytes buffia. The purpose and the size of the parameters
are listew. Since this FCB can support the Floppy Disk
file, you *ind some meaningless parameters for RAM files.
Of cause, in use them for own your purpose if you wish.

(1) FL.MOD

Aqdress: FCBOFF+9
Size: 1 byte

The file mode of the FCB. If this byte is not
sevnigs FCB is not used in BASIC. If you obey the
BA rule, you have to set non zero value here when

yon that file.
1 INPUT only

2 OUTPUT only
8 APPEND only

- 99 -

RAM ORGANIZATION

(2) FL.FCA B
ADDRESS ¢ FCBOFF + 1
SIZE: . 1 byte

The first cluster allocated to file. In RAM file
handling, this parameter has no meaning.

(3) FL.LCA
ADDRESS: FCBOFF + 2
SIZE: 1 byte

The last cluster accessed. For RAM file open, this
and next byte is used for the storage of the Directory
address of that RAM file.

(4) FL.LSA
ADDRESS FCBOFF + 3
SIZE 1 byte

The last sector accessed. For RAM file open, this and
previous byte is used for the storage of the Directory
address of that RAM file.

(5) FL.DSK
ADDRESS: FCBOFF + 4
SIZE 1 byte

Disk # of the file or Device 1ID. The table listed
below is the Device ID table in PC-8281A.

Device name ID number
LCD “XFF

(CRT - °XFE)
CAS “XFD

COM “XFC

(WAND - "XF8)
LPT “XFA

RAM “XF9

CRT and WAND is option I/0.

(6) FL.SLB

- 186 -

RAM ORGANIZATION
ADDRESS: FCBOFF + S - .
SIZE: 1 byte

Size of last buffer read.

(7) FL.BPS

ADDRESS: FCBOFF + 6
SIZE: 1 byte
| The position in buffer for both PRINT and INPUT with

the file #, One of the most important parameter 1in
FCB.

(8) FL.FLG

ADDRESS: FCBOFF + 7

SIZE .

This byte and next byte are used for the offset
address of the RAM file which is opened now. For
example, in the °‘INPUT® mode file, this offset address
is advanced by 256 bytes when the block-read command
reads 256 bytes from the file into the buffer in FCB.
So 1n reading or writing to the RAM file (DO file),

~ the starting address and this offset show the next
byte should be read or written.

(9) FL.OPS

ADDRESS: FCBOFF + 8

SIZE: 1 byte
High byte of the offset address for RAM file. Refer
to FL.FLG.

(18)FL.BUF

ADDRESS: FCBOFF + 9

SIZE: 256 bytes
| Buffer for the file.

- 181 -

CHAPTER 8
RAM FILE HANDLING

In this chapter, the technic to manage the RAM file is
described. The main purpose is to create or delete a RAM file
for the applications stored RAM area or 2nd ROM. As described
before, if there is some violation in standard rules of RAM
file handling, the file you made (or sometimes all files in
the RAM) will be lost by the standard manipulation. (The
*standard manipulation’ means the file handling or operation
with Menu, BASIC, TEXT or TELCOM in the ROM #@.)

There are many useful routines to make up these
violation in standard rules in ROM #8. But using ROM #8 from
ROM #1 will reduce the speed of the application. If you want
to handle the RAM file without ROM #8, please make sure "What
you should do® in this chapter. And refer to ‘Bookkeeping’
and ‘Directory structure’.

NOTE: The another technical manual for PC-8281A has
been awvailable already. There are many information
about the RAM file handling routines in ROM #@ in it.
For example, ‘OPEN RAM FILES®', °KILL ASCII FILE®,
'READ A CHARACTER FROM A RAM FILE® and °CLOSE ALL

FILES®. If you will use your application or
subro*tine with ROM #8, you had better refer <to that
manual .

- 182 -

RAM FILE HANDLING

8.

1 WHAT SHOULD WE DO IN RAM FILE HANDLING

In the "Directory structure’' and ‘Bookkeeping area',

many rules about the RAM file handling are described. I do
explain again about the important rules.

1.

Make sure that there is enough free area

When a new file is opened , or new data 1is appended
and inserted, please investigate whether there is enough
free bytes in the current RAM bank. Especially, the free
area requested in OPEN is sometimes ignored. At least, one
byte is necessary for OPEN a DO file. 3 bytes for CO file.
Refer to 'What is RAM file® and following sections. :

You can find where the free space is in the figure in
‘Bookkeeping are’. The difference between the pointer
'STREND' and the value in the stack pointer indicates the
free size. But don’t forget that some area will be used for
the stack operation in that free area. For instance, the
make-room routine used in BASIC and TEXT recognizes that the
current free space is less 120 bytes than that difference.
In other words, 128 bytes is always maintained for the 60
stack area when new data is stored. Refer to 'MAKHOL' in

. *Useful Routine For RAM File Handling In ROM #0°.

2. ‘Register file name correctly

The contenta of the directory is described in
‘Directory construction’. Ne one forgets to register the
file name in 1it. But scmeocne forgets to set up the

directory flag byte and the starting address of the file.
If you don’t set the directory flag, the file might be
deleted by Menu or another operation. If you write a bad
starting address in the address field, the link of the
directory and the files will be lost. By the result, you
cannot select a file properly in the Menu mode or PC-8201A
is hung up. Any way, the directory flag and address field
have very important meaning. Please refer to the ‘Directory
construction’ and following sections.

3. Maintain the order of the files

In order to maintain the order of the file, we have to
do a special trick in setting the starting address of the

- 103 -

RAM FILE HANDLING

new file. For a new DO file, we have to set ASCTAB -1 as
the starting address of that new file at the directory area.
And for a new BA file, you have to register the ASCTAB ~1 in
the ‘non-registered’ file’s directory area and insert double
NULL code there. That new BA file will be created at ASCTAB
-1 and will have the starting address, ASCTAB - 2. In
making both of a new DO file and a new BA file, ULNKFIL
should be executed before end of its process. Refer to
*Useful Routines for RAM file handling in ROM #0°' to
understand what is LNKFIL. '

4, Make and shrink a hole safely

The calculation of the free space is very important.
And you have to maintain the stack area when you make a your
room. And one more important thing is the management of the
pointers. The reason why many programs, Menu, BASIC, TEXT
and so on, can use the same RAM area safely 1is that they
adjust the pointers for RAM every time when they change the
RAM configuration. For example, BASIC deletes & BASIC
program file, he changes many pointers, STREND, ARYTAB,
VARTAB, BINTAB and ASCTAB. And he turns off the directory
flag in order to indicate that the slot in the directory is
not used now. Refer to MAKNOL and MASDEL in ‘Useful
Routines for RAM file handling in ROM #0.° :

S. Insert the promissory byte in the file

When you open a DO file, you have to enter one byte
data at least. The data is Control=-Z (°X1A), it shows the
end of file in RAM. Sometimes this promissory byte is
forgotten. So the routine which makes up the starting
address in the directory area is confused. Simul taneously
BASIC needs 2 NULL bytes at the end of the file. Otherwise
CO file requires the 6 bytes file header at the top of the
file. Refer to ‘"What is RAM file'.

6. Make up the starting address= in the directory

When you changes the RAM configuration, you have to
care not only the pointers but also the starting address in
the directory area. It is easy to image that the starting
address 1in the address field of all the DO files should be

- 164 -

RAM FILE HANDLING

changed when you make a new BASIC file. (BASIC file 1is
created under the lowest DO file. Refer to ‘Memory Map
about RAM files') And when some data are inserted in
*A.D0°, a DO file, the starting address of the DO file and
CO file located above ‘A.D0°' should be changed. Refer to
*LNKFIL® in the ‘Useful Routines For RAM file Handling in
ROM #8°. You can get the know—how to make up the starting
address in the directory area. '

7. Bad data in DO file

You cannot store the data which include the character
whose code 1is 0, “X8 and "X1A. The "0’ is used °"NULL® to
indicate the hole which is not used. Or double NULL means
the end of the BA file. The "“X8' is used "Back space’.
The ""1A° is regarded as the end of the DO file, as you
know. Refer to ‘DO file®.

- 185 -

RAM FILE HANDLING

8.2 HOW TO MAKE NEW FILE

é.2.1 How To Register The Neuw File Name

At the first, the new file name should be registered
in the user’s directory area when you create a new file. The
user s 'directory area is started from USRDIR. And the next
byte of the user’s directory area, the end of the directory
area, has “XFF (255 in decimal). This byte is called

‘Directory Stopper’. The used slot starts with the number
larger than “X88 as the directory flag. Therefore it is easy
to find the free slot. Refer to the sample program shown
later.

You had better compare the new file name with the file
name which is existed already. Two files which have same file
name sometime= occur a serious problem. So during searching
the free slot, the existed file name should be checked. And
if there is a same file name, you had better delete it before
making new file or abandon to make a new file.

If you succeed to find a free slot in the user’s
directory area, you have to register the directory flag, the
address of the file and the file name. In this time, you have
already knouwn the file name. And you can set the directory
flag now. (You can get the detail information about the
Directory flag in the section, DIRECTORY STRUCTURE.) The
address of the file will be fixed later. Because the way to
get the address for the new file is depend on the file type,
DO file, BA file and CO file. Any way, don’t forget to set up
the directory flag when you register the new file.name.

- Otherwise =omecne, Menu, BASIC or TEXT and sc on, will destroy

your new file without any caution.

Refer to 'Directory construction'.

8.2.2 How To Make DO File

If you have already registered the file name and
directory flag at the slot in the directory area, now the only
one information lacking in the new directory area 1is the
address of the new DO file. If you didn't read "How to
Register The New File Name' and you have not set the file name

- = 186 -

RAM FILE HANDLING

asw

and directory ?lag yet, please read that section and make up
them first.

Usually the new DO file is created just above the
ASCTAB, the lowest address of the existed DO files. Refer to
the figure in the ‘What is RAM file" to make sure your image.
If you go with the standard rule which Menu, BASIC and others
in ROM #0 is used, you can copy the contents of the ASCTAB-1
as the starting address of the new files. Then the
registration of the new DO file is done completely. The
reason why we have to use ASCTAB-1 instead of ASCTAB is to
m%jntain the order of the files. The LNKFIL, to make wup
starting address in directory area, searches the file name
from top to end and links the starting address of each file.
‘'For LNKFIL searches the directory from younger address to -
older address and older file has younger address, the order of
the DO file will be swapped if you use ASCTAB instead of
ASCTAB-1. Refer to °‘LNKFIL® in ‘Useful Routine for RAM file
handling in ROM #8°, ’

But you have to do two more steps for that new OO
file. One is to insert the end of file flag at the bottom of
that new DO file. Another one is, as you know, tc make up the
starting address of other files in the directory area.

: There is no DO file whose size is zero, because the
final character of the D0 fiie should be “Z (“X1A, 26 in
Decimal). In other words, the "Z indicates the End of File of
the DO file. So the DO file will spend one byte at least. If
you only want to open the new DO file without any data, you
have to insert a “Z at the starting address. If you want to
save some data now, you have to append a "Z at the end of the
data. Never forget +to insert a "Z at the end of the file.
E?Teruise, next RAM file operation might deatroy the all RAM
l1ies. . .

In order to make a room for the new file, a convenient
routine is in the ROM #08. Its name is MAKHOL, MAKe HOLe.
This routine makes a hole from the specified point and whose
size can be decided by the contents in [BC] register. Refer
to 'MAKHOL® in ‘Useful Routine For RAM file handling in ROM
#9°, The concept of the MAKHOL is shown briefly in that
section.

R If there is no free area in RAM, and you cannot insert
a Z, you cannot continue to enter data toc the file. And, of
course, you have to clear the directory flag for next user.

To make up the starting address in the directory area,
the routine named LNKFIL is ready in ROM #8. The flow diagram

- 107 -

RAM FILE HANDLING -

—— el

of that routine is shown in the ‘Useful Routine For RAM file
handling in ROM #3°'., You can get information to make your own
LNKFIL routine in it, too.

. If you succeed to insert & “Z and to make up the
starting address field in the directory, the opening a new DO
file has been done successfully. You can save the data to the
new file with using MAKHOL and LNKFIL. Refer to another
section to know how to Append, Insert, and Delete data. The
sample program in the following section will show you how to
make a new file and save data.

Cf. How to make a neQ DO file

1. Find a free slot in the user’s directory. If you
cannot find a free slot in the directory area, you
have to give up to make a new D0 file. Or if you
find the same name in the directory, delete that
file or abandon to continue.

2. Register the file name and airectory'Flag at the
free slot.

3. Get the ASCTAB-1 and save it in the address field
of the slot.

4. Try to make a one byte ho]e at the address uwhere
ASCTAB pointed.

S. If you fail to make a hole, clear the directory
flag which you registered at (2).

6. If you succeed to make a hkole, insert a “Z at that
point.

-

7. Make Qp the pointers and starting address in the
directory area.

8. That’s all, The new DO file has been created
without fail.

NOTE: If you make a hole by your own routine, please
make sure that the your own routine refines the
pointers. Refer to the explanation about the MAKHOL.
And refer to °‘LNKFIL®' <to know how to make up the
address in Directory. ' '

- 1068 -

RAM FILE HANDLING

8.2.3 How To Make A BA File

There is few difference between how to make DO Ffile
and How to make BASIC file. There is no difference in the
registration of the file name and the directory flag. The
firat difference is that you have to end the BASIC file with
double NULLs (8) instead of “Z in DO files. In order to
understand what double NULLs means, you have to familiar with
the function of the LINK POINTER in the Microsoft BASIC. The
inner specification of the Microsoft BASIC file is too
difficult to described here briefly. You can get some good
texts to learn the information about the BASIC programs and
their data constructions at the book store or the computer
shop. But the basic concept about RAM file handling is
exactly same as DO file. (Register the file name and another
information at the directory and make a room for the program.)

The second difference is the new BA file is created
Jjust above the BA files which has already stored. In other
words, the new BA file is inserted just below the lowest DO
file. Refer to the section, 'WHAT IS RAM FILE?". ‘

I believe that the person who wants to handle the BA
files, is an expert about the BASIC program and BASIC
interpreter. If you are a novice class programmer about the
BASIC interpreter, you had better not try to handle the BA
file yourself. Please use BASIC mode in ROM #8.

ex., How to create a new BA file in PC-8201A

1. Search a free slot in the user’s directory area.
If you find a same name in the directory area,
delete the file or abandon to continue.

2. Set up the directory flag and copy the file name-
into the directory.

3. Copy ASCTAB -1 into NULDIR, non-register program’s
directory area. And make 2 bytes hole and store
the double NULL for non-register program.

4, Make a hole as large as possible at the ASCTAB-1.

S. The size of that hole is too small for the new BA
file, clear that directory flag written in (2).

- 109 -

RAM FILE HANDLING

6.

8.
9.

1g.

If you succeed to make a big hole for your BA
file, copy the BASIC program into the hole. Don’t
forget to insert the double NULLs at the end of
the program.

Register the starting address at the starting
address area in the directory area. Usually, the

address that is one byte less <than the starting‘

address of the non-registered program is used.
Squeeze the hole, when you made a too large hole.

Adjust the pointers, ASCTAB, BINTAB, VARTAB,
ARYTAB and STREND. Make up the starting address

of other files in the directory area. All DO
files” and CO files’ starting address in the
directory field should be changed. Refer to
LNKFIL.

End

- 118 -

RAM FILE HANDLING

8.2.4 How To Make A CO File

The CO file is the another type of the file which you
want to make _yourself beside the DO file. The difference
between DO file and CO file is the heading instruction of the
file. ' The CO file needs the heading data instead of the End
of File character, “Z. So you have to make sure that there
are more than & bytes besides the size of your machine
language program in the free area. And if there is no enough
free area, you cannot continue to make a new CO file. If yocu
have already set up the directory flag and file name, clear
them: soon. Don't leave the illegal flag and file name in the
directory. :

Heading of CO file

START ADDRESS 2 bytes
LENGTH 2 bytes
EXECUTION ADDRESS 2 bytes

So the file length of CO file can be calculated by
LENGTH <+ 6. In making CO file, don’t forget to renew the
pointers, VARTAB ,ARYTAB and STREND. _—

The CO file is usually made just under +the address
pointed by VARTAB. So the starting address of the other files
need not be changed after saving new CO file. But I reccmmend
to do LNKFIL after saving new CO file for safety.

ex. BSAVE °"MAC®,S0000,10,50080 in BASIC mode

Dump the data in CO file is;

XS0 “XC3 “XBA “X08 “X58 “XC3 ¢+ oo .

“XC358 (50888) Starting addres;
“X000A (19) Length
~“XC350 (50008) Execution address

- 111 -~

RAM FILE HANDLING

Cf.

1.

3.
4.

The flow of making a new CO file

Search the free slot in the directory area. If
there is the same file name in the directory,
delete that file or abandon to continue.

Check the free area. Estimate the free éize is
greater than your CO file’s length + 6 bytes.,

If there is no room, stop making a new CO file.

Make a hole just under address pointed by VARTAB
and store the data (or machine language program).
Make sure that all pointers are proper. In <this
time, if you use MAKHOL to make a room, you have
to adjust the pointer, BINTAB. Because MAKHOL
changes BINTAB always.

Register the file name, directory flag and start
address at the directory. ‘

Adjust VARTAB, ARYTAB and STREND. Make up the
starting address of all other files in the
directory for safety. If you wuse LNKFIL for
adjustment of the all start addresses in
directory, you have to care about the BINTAB as
you do in MAKHOL.

. That’s all,

- 112 -

RAM FILE HANDLING

8.3 HOW TO DELETE A FILE

You can guess how to delete a file from the RAM file
-aystem 1in PC-8821 easily. The things that you have to do are
to clear the directory flag and to remove the data of the
file.

To delete a directory entry, you only turn off the
directory flag. If the directory flag is less than “X88,
other programs regardes that slot is not used now.

And when you squeeze the body of the file, you have to
check the pointers and the start address of other files in the
directory. UWhen you are using the subroutines in ROM #4,
these pointers are adjusted automatically. But if you do it
by your own routine, you have to care about the pointers. You
can find the good clues in ‘How to make new file', and
'MAKHOL® in ‘Useful Routines for RAM file handling in ROM #0°.

Whether you treat the pointers by your own routine or
utilize the MASDEL in ROM #8, you have to make up the starting
addresses of the another files. The LNKFIL will do it well.
Refer to the following section to know the ENTRY information
about the LNKFIL. That section will give you a clue uwhat
LNKFIL should do when you will make a LNKFIL by yourself.

8.3.1 How To Delete A DO File

At the first, search the file name which you want to
delete in the file. If you don’t remember the directory
construction, please refer to the chapter ‘DIRECTORY
CONSTRUCTION®, and make sure it. When you find the file name
in the directory, check the directory flag of the file. The
file which 1is opened in BASIC, cannot be deleted. If you do
it by force, the RAM file system might be crushed or the
system might be hung up.

Cf. The flow of deleting a B0 file (Calling Machine
language program by USR function in BASIC.)

1. Search the file name in the directory

- 113 -

RAM FILE HANDLING

2. Check the directory flag and if the file is opened
by BASIC , you cannot delete it.

3. Get the starting address of the file
4, Search “Z (End of File)
S. Count the size of the file

6. Remove the data of the file and shrink. The ROCM
routine MASDEL will do it automatically. MASDEL
changes the pointers, BINTAB, VARTAB, ARYTAB and
STREND automatically.

7. Refine the starting address of other files.
LNKFIL will help you.

8. Clear the directory flag of the file which yocu
deleted.

9. That's all

8.3.2 How To Delete A BA File

When you are not in BASIC program, there 1is feuw
differences between killing DO file and killing BA file. The
- differences are in searching the end of file. In DO file, ~“Z
(26 1in .decimal) indicates the End of file. But in BA file,
there is no such a good terminater. The only one way to get
the end of the BA file is tracing the "link pointer’ from the
beginning of the BA file to end. If you can utilize the ROM
#3, you may use the useful routines, CHEAD. The CHEAD
searches the end of the BA file. And MASDEL removes the data
and refines the pointers. You have to care about the TXTTAB
position. If you delete a BA file which is located under the
file pointed by TXTTAB, you have to adjust the TXTTAB. This
case is occurred when TXTTAB points the second BA file and you
delete the first BA file. Finally, you have to do make up the
all starting address (link pointers) in directory area.
LNKFIL will do it.

NOTE: MASDEL does not change the ASCTAB. UWhen a BA
file 1is killed, ASCTAB should be changed. Sp after

- 114 -

RAM FILE HANDLING

calling MASDEL, you have to adjust the ASCTAB. Refer
to the sample program in the following section. Also
"How to make a BA file®" will give you a clue.

Another difference is that there is a limitation 1in
deleting a BA file when you are executing that BASIC program.
The following caution is available when you make a machine
language subroutine for a program written in BASIC. If you
won’'t make a machine language subroutine which handles the
BASIC file, you may skip to read this caution.

NOTE: You cannot kil]l the BA file when you are in
it. In other words, when you are running a machine
language subroutine with a BASIC program, you may not
delete that BASIC program in the subroutine. I'm
afraid that this explanation will not make sense for
yod. So I will show you the short sample.

In the BASIC mode, you can know where you are
in by °‘FILES®' command. The file name with "%’ is the
current file which you are treating. You don 't kill

it.

1. Select BASIC mode in the menu

2. Type a BASIC program.
18 PRINT °*HELLO®

3. Save it.
SAVE °TEST®

4, lLoad it again.
: LoAD °TEST®

S. Try to kill it
KILL °TEST.BA® (Return)
?FC Error
Ok

é. This result show you what I want to say. BASIC’s
KILL command checks the current TXTTAB and avoid
to kill himself. Your machine Jlanguage routine
should do same check before killing a BASIC file.

- 115 -

RAM FILE HANDLING

NOTE: The comparison between TXTTAB and the
starting address of the BA file is available only when
you are executing the BASIC program or executing the
machine language subroutine in BASIC mode. It is
meaningless to care about the TXTTAB and starting
address when you are not in BASIC mode. .

' Refer to "What is RAM file®' and "Bookkeeping area’ to
understand the position of the BA files and TXTTAB. '

Cf. The flow of the deleting the BA file

1. Search the file name in the directory

2. Check the directory flag and if the file is not BA
file, of course, you cannot delete it.

3. Get the starting address of the file in the
directory

4. Compare that starting address to TXTTAB. If they
are identical, you cannot delete it. If not, yocu
have to remember which is larger, the starting
address or TXTTAB.

S. Search End of the File ‘
CHEAD will help you to find the end of file.
Refer to "Useful Routines for RAM file Handling in
ROM #Q@°, ‘

6. Count the size of the file

7. Remove the data of the file and shrink.
The ROM routine MASDEL will do it automatically.
MASDEL changes the pointers, BINTAB, VARTAB,
ARYTAB and STREND. Refer to "What is RAM file'
and ‘Bookkeeping area’. And MASDEL returns the
negative length in BC register. You can use it to
adjust the ASCTAB.

8. Adjust ASCTAB
9. Refine the starting address of other files.

LNKFIL will help you. Refer +to ‘Useful Routine
For RAM file handling in ROM #0°.

- 116 -

i,

ERéétore the result of the comparison between the
. ‘starting address of the file and TXTTAB. If
- TXTTAB is greater than the starting addres, adjust

'EC1ear the directory flag of the file which you
‘deleted. :

;That's all

" To DELETE A CO File

- don’t have to care about where you are in now like
~ file or killing DO file. You may delete any CO
nt to delete, even if you are executing that CO
. CO file is loaded at the specified area when the
oked in menu mode or in BASIC mcde. So the 'CO°
delete the 'CO’ file itself, and can save the free

- 117 -

RAM FILE HANDLING

ex. Delete a CO file itself

1. Load a2 CO file in BASIC or MENU .

“XFFFF

i machine prog ;
H 1<==1 BLOAD
i or

H : i Select

== s=ss=========== ' in

i C02 file ' : H

: . ' i MENU

i CO file P —
BINTAB->! . :

i DO files E

i BA files 5
~X8608 —- '

Fig 8.1

- 118 -

chine prog

~XFFFF

! machine prog !
: 1 ¢(—— PC
: ! ¢~ STREND
! €02 file I <— “XAAAA
! CO file ;
: I <~ BINTAB
! DO files !
! BA files !

000 -- '
Fig 8.2

- 119 -

B R~)

RAM FILE HANDLING

3.

Delete the CO-file and move the
“XAAAA.

data between the STREND

“XFFFF
! machine prog i<~ PC
' i <~ STREND
i CO2 file ' '
; i <= BINTAB
i DO files 5
i BA files :
“X8660
Fig 8.3

NOTE: PC means Program Counter

- 128 -

and

RAM FILE HANDLING

Unfortunately, you cannot use MASDEL simply for
shrinking the hole which is made by killing the CO file, like
in deleting a BA file and a DO file. Because MASDEL changes
the pointer, BINTAB. (You can understand why BINTAB should
not be changed by reviewing the section, 'What is RAM files'
and ‘Bookkeeping area'.) So if you want to use MASDEL, I do
recommend that, you have to save the BINTAB before calling
MASDEL and restore it after calling MASDEL.

Cf. The flow of deleting CO file.

1. Search a file name which you want to delete

2. Save the starting address in the directory

3. Calculate the size of that file. The 2nd and 3rd
byte in that file shouw the data length. So the
total size of the file is made by adding 6 bytes
to the data length. (The 6 bytes includes the
starting address, data length and the execution
address. Refer to ‘What is the RAM file."®)

4. Set the starting address and the length for MASDEL

S. Save BINTAB

é. Call MASDEL

7. Recover BINTAB

8. Clear the directcry flag of thé file

9. That’s all

- 121 -

RAM FILE HANDLING

8.4 HOW TG APPEND DATA TO DO FILE

The way to append data to the DO file is very easy.

At the first, get the starting address of the DO file in the

directory and search the end of file, “Z. Then, make a room

for data you want to store at that point. The routine,

MAKHOL, is a best routine to make a room. Refer to ‘Useful

- Routine For RAM file handling in ROM #8°. And don 't forget to

refine the starting address of other files in the directory

area. LNKFIL will help you. Refer to previous chapter, ‘How
to make a DO file® also.

Cf. APPEND data to the DO file

1. Search the file name in the directory

2. Make sure the file type and status by checking the
directory flag. '

3. Get the starting address in the directory
4. Search the end of file, “Z (26 in Decimal)

S. Make a hole just before the “Z.
I recommend to use MAKHOL.

6. Store data in the hole

7. Shrink therhole,.uhen the hole you made 1is too
large for the data

MASDEL in ROM #9 is useful..

8. Refine the starting address in the Directory area.
LNKFIL will help you.

9. End

There is a sample program of how to APPEND data to DO
file in the following section. .

- 122 -

RAM FILE HANDLING

8.5 HOW TO INSERT DATA TO DO FILE

When you want to insert some data to the DO file, you
can use the know-how which you use to APPEND data to the DO
file. The difference is that you have to search the address
where you want to insert the data instead of searching the end

of file.

Cf.
1.
2.

- 3.
4.
S.

6.
7.

Insert data to DO file
Search the file name in the d1rectory

Make sure the file type and status by checking the
directory flag

Cet the starting address in the directory
Get the address where you want to insert the data
Make a hole for the data at the point

Usually, MAKHOL in ROM #90 is used. MAKHOL changes
the pointers, BINTABR, VARTAB, ARYTAB and STREND.

Copy data in the hole

Shrink the hole, when the hole is toco large for
the data

MASDEL in ROM #@ is useful. MASDEL adjusts
the pointers, BINTAB, VARTAB, ARYTAB and STREND.

Ad just the starting address in the RAM.

LNKFIL in ROM #8 is useful. Refer to ‘Useful
Routines for RAM file Handling in ROM #@°

End

=123 -

RAM FILE HANDLING

- 8.6 HOW TO DELETE DATA FROM DO FILE

To DELETE data from the DO file is easier than to
INSERT data to the DO file. If you will use the ROM #8, the
routine named MASDEL delete the data. The MASDEL refines the
pointers and LNKFIL adjusts the starting addresses of other
file’s. You can find the detail information about MASDEL and
LNKFIL in ‘Useful Routine for RAM file in ROM #8. If you
cannot use the ROM #8, you have to renew the pointers, BINTAB,
VARTAB, ARYTAB and STREND by YOURSELF. And you must modify
the starting addresses in the directory YOURSELF. Refer to
the chapter ‘Directory construction®’ and ‘Bookkeeping®' to
under stand the directory structure and pointers. ‘MaKHOL *
and °LNKFIL® in ‘Useful Routine for RAM file handling in ROM
#0° show you how to do it.

- 124 -

RAM FILE HANDLING

8.7 USEFUL ROUTINES FOR RAM FILE HANDLING IN ROM #8

There are several useful routines in ROM #8 for RAM
file handling. ‘Indeed that you have to do 'bank-switching®' to
use these RAM file handling routines from ROM #1. (Refer to
Chapter 3.3) But you don’t have to worry about the pointers,
if you use them. And also, you can save the time to make your
own subroutines. I do recommend you to use these RAM file
handling routines in ROM #8 for saving time and making
applications smoothly. '

The presented useful routine in ROM #0.
MAKHOL: Make a room for data entry with changing the pointers

LNKFIL: Make sure the start address in the directory area

MASDEL: Shrink the room made by MAKHOL. This file help you
when you made a too large holg.

CHEAD: Search the end of file in BA file.

- 125 -

RAM FILE HANDLING

8.7.1 MAKHOL y

Make a hole

ADDRESS “X6COA ("066812, 27658)

ENTRY CHLJ] points where you want to make a hole

EXIT

CBC] size of the hole

CHL] and C[BCJ] are preserved
Carry is set if out of memory

In order to know the free area’s size, STREND
is the best pointer. The amount of the STREND and
your file’s aize, in this case, should be less than

gsPl - 128, (The ‘'SP’ means Stack Pointer, as you
know.) The 128 bytes are reserved for Stack’s
operation. If <there is a enough room, MAKHOL shifts

the all data between the specified address and STREND.
If not, MAKHOL returns with carry set. The flow of
MAKHOL is listed at next page.

- 126 -

RAM FILE HANDLING

ex, The flow of MAKHOL. (How toc make a room safely.)

MAKHOL

N -- K

y STREND + Regquired bytes
: < SP - Stack area (128 bytes)

----- ====> Out of Memory

Move the data between STRENO and
specified address

7% 3%

Change the pointers
ASCTAB, BINTAB, VARTAB, ARYTAB

and STREND
/ ¥
i RETURN !
¥ /
Fig 8.4

It is unnecessary to care about the pointers
unless you make your ocwn MAKHOL routine. The MAKHOL
in ROM #08 manages the pointers automatically. But it
does not change the starting address in the directory
field. Refer to LNKFIL.

- %% When you make a hole just above the ASCTAB to
create a new DO file, you have to change the
pointers, BINTAB, VARTAB and ARYTAB. The ASCTAB
is modified only when you make a hole under ASCTAB
to register a new BA file.

- 127 -

RAM FILE HANDLING

. It is easy to guess that calling MAKHOL too many times
will reduce the processing speed. So you had better call the
MAKHOL with a good large number in BC register. It makes a
good hole which is large enough to save the data you want to
keep. The only one thing you have to care of is that you have
to shrink the hole when you made a too big hole. The DO file
cannot include NUL (8) and "Z (26) in the file. (The “Z means
the End of File, as you know.) There is a convenient routine
to shrink the hole and it refines the pointers, also. Its
name is MASDEL and you can get the information about it in the

following section.

- 128 -

RAM FILE HANDLING
8.7.2 LNKFIL

Fix up directory structure

ADDRESS AX233A (~021472, 9918)
ENTRY : NONE
EXIT : NONE

All registers might be altered -

This routine fixes up all possible incomplete ‘links’
between files and their directories. There are many chances
in that the link pointers (same as starting address) in the
directory fields are not maintained properly. For instance,
Making a new DO file will change the starting address of other
DO files and CO file. 1 agree that these link pointers should
be modified every time when the RAM organization is modified.
But it is also true that such a operation will make a big
overhead in RAM file handling. Since you had better make sure
when LNKFIL should be called. For instance, when a file is
deleted during further file I/0, all link pointers should be

fixed up.

- 129 -

RAM FILE HANDLING

Internal flow of LNKFIL

/

¥
LNKFIL :
/ .- :

¥

Mark the all valid directory
flag (turn @ bit of all
valid directory flag)

Get the lowest file address

Get the lowest link pointer |
in the valid file's ;
directory H

Save this link pointer |

1 <

Search the lowest link pointer!

in the marked files in
directory area

Save the saved link pointer
at this marked files link
pointer field

Demark the directory flag of
that file. (turn off the bit 0
of that file)

(A)

- 1390 -

~~

7o U |

RAM FILE HANDLING

”~~
D
A4

Get next lowest file address
from the bottom of RAM

has demaked?

All marked directory flag

Not End of directory

~~

—— e te " e mw o e ce oe o= ==]

End of directory

END

K -=N

¥
/

Fig 8.5

When the top address of -the next file is searched,

A4

the

pointers, ASCTAB and BINTAB are useful to know what kind of

- file is searched now.

- 131 -

RAM FILE HANDLING

8.7.3 MASDEL

Delete tBCJ bytes From EHEJ

ADORESS ¢ “XéC3C ("04é074, 27708)

ENTRY:

EXIT:

CHL] pointer of the hole should be squeezed
C(BC] size of the hole

CHL] preserved

CBCJ negated

This routine do exactly reverse operation of
MAKHOL . The data above the C[HLI+[BCJ] is moved up.
And the pointers, BINTAB, VARTAB, ARYTAB are modified.
If you use this routine for shrinking a hole cf BA
file, you can adjust the ASCTAB with the negated ([BC1] .
after exit this routine. And alsoc you can adjust the
TXTTAB by using this negated BC register if necessary.
You have to adjust the TXTTAB when you remove a BA
file which is located under the address where is
pointed by TXTTAB.

If you want utilize this routine for CO file,

you need save BINTAB and recover it after exit. The
BINTAB is not modified by killing CO file.

- 132 -

RAM FILE HANOLING | .
8.7.4 CHEAD

Search for the end of this BASIC program

ADDRESS ~%718 (34300, 1816)
ENTRY ¢ CHL] Top address of that BASIC file

EXIT ¢ CHL] The last address of that BASIC file
All registers and flags are modified possibly

The main purpose of CHEAD is fix links of the
BASIC program. In other words, CHEAD goces through
program storage and fixes up all the links. The end
of each line is found by searching for the zero at the
end. The double zero link is used to detect the end
of the program. So EXIT CHL] and one will show you
the tép address of the next file.

- 133 -

RAM FILE HANDLING
8.8 SAMPLE PROGRAM

The sample programs listed here are the exactly
“SAMPLE". So some processes are omitted toc make explanation
clearly. For instance, searching directory to find the good
slot for file handling is not described except ‘How to make a
DO file'. You know that you have to survey the all directory
for checking the same file name and free slot, when you make a

new file.

And also, these programs, stored this section are
written in plane program technic. You will find another good
algorism to handle the RAM files safely and quickly.

- 134 -

RAM FILE HANDLIN

G

8.8.1 Make A New DO File (ASCii File)

USRDIR

EDTDIR
DIRLEN
file

NAMLEN
ASCTAB

LNKFIL

MAKHOL
EOFFIL

OPENDG:

-e

SEANAM:

e We wo

o we W

Register new DO file in the D1rectory area

OPEN DO file

XRA
MOV
MOV
SHLD

LXI

LXI
DAD
MoV
CPI
JC

INR
JZ

Is the file

DOCR
MoV
ANI

ORA
JZ

PUSH
INX
INX

EQU *XF891 ;Top address of user’s

' sdirectory

EQU USRDIR - Directory length

EQU 11 sLength of the directory per

EQU é sLength of the file name

EQU *XFAE1 ;Points the lowest address of
,DO files

EQU . *X233A ;Make up the address 1n

' ,Dxrectory

EQU “X6CBA ;Make a room for file

EQU “1AH tEnd of DO file

A ;Clear HL

H,A 3

L,A . 3

SLTADR ,C]ear slot address

H,EDTDIR ;Set Ltop of user directoryl]
$ - Directory length

B,DIRLEN;Set Directory length

B ;1Get next slot

A,M ;1Cet directory flag

X80 sValid?

NONVAL Jdump if not valid slot
A sEnd of directory area?
ENDSEA ;;Jump if end of test

00 file?

A sAdjust directory flag
0,A scopy flag for later use
“B01000B0A

sPick up ASCII flag
A ;00 file?
SEANAM ;Jump if not DO file

Compare the name

H ' s1Save the slot address
H
H $Advance to name field in

- 135 -

RAM FILE HANDLING

XCHG
LXI

MVI
CMPNAM:
LDAX
CPI
JNZ
INX
INX
DCR
JNZ

e wWe we

POP
MOV
ANT

ORA
JNZ

we we o

SHLD
-CALL
- JMP

weo e weo

XCHG
LHLD

MOV
ORA
JNZ
XCHG
SHLD
JMP

EVERFN:
XCHG
IMP

LHLD
MOV
ORA

H, NAME .
B,NAMLEN

D
M
NOTSAM
H
D
B
CMPNAM

Same file name is found

H sTop of the slot address
A,M ;Get directory flag
“BB00B00B10
sPick up OPEN BIT
A sFile already opened?
FILAOP j;Jump if file already opened

SLTADR
DELFIL

FINDNM

Find free slot

SLTADR

A,H
L
EVERFN

SLTADR
SEANAM

SEANAM

SLTADR
A’H
L

$ directory

sLDEJ] name address
sname of the file which
;} we want to make

1Set name Fength

;Get directory’s name
sCompare with our file
sJump if not same
$Advance the pointers

scompare next

Find same name and not opened file

1Save it
sDelete this file
3go to Registration

$COE] free slot addreas
;1Cet free slot address

;3 that has been found

’

$Never found? .
sjump 1f already found
sThis is the first time

s1Check next slot

Don’t renew the address

[
’
°
’

To search the directory is done

1Ie there good free slot?

- 136 -

RAM FILE HANDLING

JZ

PUSH
MVI

INX
INX
LXI
MVI
CPYNAM:
LDAX
MOV
INX
INX
DCR
JNZ

LHLD
LXI

CALL

Jc

MVI
DCX

POP
INX
MOV
STAX
INX
MOV
STAX

CALL
RET

ELFIL:

FILACP:

sJump if directory full

DIRFULL
H 1Save the top of the slot
M, B110000G00G
;1Set directory flag as DO
3 file
H sAdvance to name field
H
D,NAME ;Top of our file name
B,NAMLEN;Name length
D sget our file name
M,A jcopy it in directory
H H
D
B ;Continue to end of name
CPYNAM
ASCTAB ;Get lowest address for DO
;s files
B,1 ;Make one byte hole
MAKHOL ;Dig
MEMFUL ssJump if out of memory
M,EOFFIL;Set end of file marker
H iLowest address - 1
; for maintain the file order
D iRecover Top of that slot
D ;Advance to address field
A,L ;set start address
D .
D
A,H
D

LNKFIL

External routines

Make up starting address of other files in
directory area

;s Delete the specified file

3 Error handling -=-- File already opened

MEMFUL :

- 137 -

RAM FILE HANDLING

Error handling === Memo;y full

.o

DIRFUL:

$ Error handling =-— Directory full
; DATA AREA
NAME: DB ‘TEST 0O’

END

- 138 -

RAM FILE HANDLING

.8.8.2 Save Data Intoc DO File -~

® WO Ve W Ve we we

MAKHOL EQU

LNKFIL EQU
ENDFIL EQU
:

SAVDAT:

MOV
PUSH
MOV
ANI

CPI

JNZ
MOV
ANI

ORA
JINZ
MOV
- ORI

MOV
; Search end
PoP
PUSH
PUSH
INX

MOV
INX

Save data into DO file

ENTRY: CHL] points directory of the file
[DE] address of source data
[BCJ length of data

“X6C0eA
“X233A

sMake a room for data
sMake up starting address

*X1A 3End of DO file

bheck the directory flag of the file

of file

A,M s1Get directory flag
B ;Save data length
B,A ;Save directory flag
“B116000ge

tPick up mode bits
“B1106600G0

300 file?
BADFIL s3Jump if not DO file
A,B sGCet flag again
“BgoGoBe10
. - 3Pick up OPEN bit
A jFile already opened?
FILAOP 3Jump if file already opened
A,B sGet directory flag
000060608198

1Say this file is opened
M,A
B ;Recover DATA length
H sSave Top of directory address
B ;Save DATA length
H sAdvance to Address field
a,M ;jcet address in [CHLJ

- 139 -

RAM FILE HANDLING | | :

MOV H,M - .
MOV L,A ;Set top of the file
; .
SEALOP: .
MOV A,M sGet Data
CPI ~ ENDFIL 3End of file?
JZ FNDEOF ;3;Jump if end of file
INX H _ :)
JMP SEALOP j3Search next

MAKE A ROOM FOR DATA

PQOP B8 sRecover data lengtH
PUSH D ; Save source address
CALL MAKHOL ;Dig a hole for data
JC MEMFUL 3 jump if error detected
POP D sRecover source address

. »

’
scopy data in to the hole

’
COPYLP:
. LDAX D sGet source data
MOV M,A ;jsave it into file
INX H
INX D
bDCX - B8 ;Decrement DATA length
ORA C : sEnd of data?
JNZ COPYL siContinue till end of data

Make up starting address of other files in
directory area

CALL LNKFIL

we W

°
’
.
?

*
1 4

s Turn off the opened bit in directory flag

°
1 4

POP H sRecover directory address
MOV A,M 1Get directory flag
ANI “B1i1111181
$Turn off the flag
MOV M,A ;Renew the flag
RET

[3
4

iExternal routines

BADFIL:
3 Bad file mode

- 140 -

RAM FILE HANDLING

FILAOP: A
$: File already opened
MEMFUL ¢
$ Memory full error. .
ENO

- 141 -

RAM FILE HANDLING

8.8.3 DELETE SOME DATA FROM DO FILE

(X}

Delete some data from DO file

ENTRY ¢ CHL] Top of the directory address
CDEJ] Offset address of Top data
should be deleted
[BC] Length of data should be deleted

® WO W WO wWe Ve We Ve

ﬁASDEL EQU “XéC3C ;Remove some data

LNKFIL EQU “X233A ;Make up starting address
; .

DELDAT:

Check directory flag

weo we weo

MOV A,M ;1Get directory flag of

s the file -
ANI “B11080060G0G)

sPick up VALID bit and ASCII

s bit
CPI “B11086000G8

' sValid DO file?

JNZ BADFIL j;Jump if bad file
MOV A,M sCet directory flag again
ANI “BO99000019

sPick up OPEN bit
ORA A sAlready opened?
JNZ FILAOP ;jump if the file already cpened
MQV A,M 1Set opened bit
ORI “BOGRB00R 18
MOV M,A sSay, the file is opened

?
PUSH H 1Save directory address
INX H 1Get start address of the file
MOV A,M H
INX H
MOV H,M 3 ,
MOV L,A ;CHL] start address of the file
?

DAD 8} Absolute address of the data

; which should be remcved
Delete data :
CHL] TOP of the data, [BCJ] data length

-e we we

- 142 -

RAM FILE HANDLING

)

CALL MASDEL ;Remove the data from file
Turn off the OPENED bit

POP H . tRestore the directory address
MOV A,M 3;Get directory fla
ANI “Bi1111101 '
s Turn off
MOV . M,A

H
$Ad just the directory

CALL LNKFIL ;Make up all start address in the
: H directory flag

RET

External routine

ADFIL:
;Bad file mode =-— Error

FILAOP:
;File already opened -- Error

.= 143 -

RAM FILE HANDOLING

8.8.4 DELETE DO FILE) -

we wo we weo

MASDEL EQU
LNKFIL EQU

DELDO:
MOV
ANI

CPI

JINZ
MOV
ANI

ORA
JINZ

Calculate the

PUSH
INX
MOV
INX
- MOV
MOV

e Wwe Ve

14
PUSH
SEALOP:
MOV
CPI
INX
JINZ

POP
MOV
SUB
MOV
MOV
SBB
MOV

-e

Delete DO file

- -

ENTRY.: CHLJ points the difectory of the file

“X4C3C ;remove data
“X233A j;adjust address field in
s directory area
A,M sCet directory flag
“B11060G00
sPick up VALID and ASCII bit
“B1106900009
sValid do file
BADFIL ; jump if bad file mode
A,M sget directory flag
“B88000GB10
ipick up opened bit
A sAlready opened?
FILAQOP ;jump if already opened
size of the file
H isave directory address
H sget start address
A,M 5 »
H
H,M sCHL] start address |
L,A {
H 1Save start adcress
AM send of file?
EOFFIL
H inext field
SEALOP :icontinue till EOF
D ;Restore start address
A,L s CHLI-CDEJ= length
E
C,A
A,H H
D
B,A ;1Set length in CBCJ

- 144 -

Ral P ILE HANJLING

XCHG sLHL] start address

CALL MASDEL ;:;Remove the data

POP H srecover directory address
XRA A
MoV M,A jclear it

Make up all start address in directory

CALL LNKFIL

RET
tExternal routine
FILAGP:

jFile already opened error

BADFIL:
iBad file mode error

‘ END

= 145 -

RAM FILE HANDLING

8.8.5 DELETE BA FILE - T

MASDEL EQU
LNKFIL EQU

CHEAD EQU
TXTTAB EQU
ASCTAB EQU

;
DELBAS:
MOV
cPI

JNZ

XCHG
LHLD

XCHG

PUSH
INX
MOV

INX
MoV
MOV
MOV
SuUB
JNZ
MOV
suB
JNZ

Delete BASIF file

Assume that this subroutine is used with BASIC
main program

ENTRY: CHL] directory address of the file

remove data from file
make up starting address

“XéC3C
“X233A

“X8718 ; search end of BASIC file

“XF4SD ; lowest address of current
s BASIC program

“XFAE1 '; Lowest address of DO files

A,M ;Cet directory flag

“B1098080000

$1BASIC file?
BADFIL jsJump if not BASIC

;3 file

sCDE] directory address
TXTTAB j;get lowest address of the

scurrent BASIC program

; (We are executing the

3 BASIC program with this
machine subroutine.)
sCDE] TXTTAB CHL] Directory
H address

H ;save directory address

H s advance to address field

‘A,M jget start address of BA file
$ which we want to delete

H

H,M

L,A sCHL] start address

A,H scompare to TXTTAB

D

NOSAM s jump if not same

A,L scompare lower address

E H

NOSAM s jump if not same

- 146 -

RAM FILE HANDLING

NOSAM:

- wo wo

- We weo

-we

we wo weo

-e

JMP

XCHG
POP
PUSH
XRA
MOV
PUSH

p—. Ly

FCERR $Yyou cannot k;ll your mother

3BASIC

}save start address
H srecover directory address
PSUW i1save result of comparison
A sCAl=0 :
M,A sclear directory flag
D $save start address

CDEJ] start address of the BA file

CALL
INX
POP
PUSH
MoV
suB
MOV

- MOV

Remove

Adjust

SBB
POP

body of
CALL
LHLD

"DAD

SHLD
PUSH

CHEAD s1search the end of BA file

H sadjust for calculation the length
D jrecover start address

0 ;Save start address again

A,L ;Calculate the length

E H

C,A ;Set length in CBCJ

A,H

D

H irecover start address

the file

MASDEL ;return negative length in CBCJ

ASCTAB jadjust ASCTAB because MASDEL
, sdoesn’t change it

B .
ASCTAB

B ssave this value for later use

starting address in directory

CALL
POP
POP
RNC
LHLD
DAD

SHLD
RET

LNKFIL
8 1Restore adjustment value
PSuW irecall result of comparison

: TXTTAB and start address
tReturn if TXTTAB is smaller
o .3 than start address
TXTTAB jAdjust TXTTAB because we
: delete BA file under TXTTAB
B
TXTTAB

- 147 -

RAM FILE HANDLING

; EXTERNAL ROUTINE

FCERR:
; I1legal function call error
BADFIL ¢ -
; Bad file mode error
END |

- 148 - o R —

RAM FILE HANDLING

8.8.6 MAKE NEW CO FILE

-
- -

MAKE NEW CO FILE

ENTRY: CSTRADR] start addresé of CO file data
CLENGTH] length of data
CEXECAD] execution address

CHL] directory address for this CO file

MAKHOL EQU “X6CBA ;:make a room:
LNKFIL EQU “X233A ;make up directory address field
HEADLN EQU é sHeader length of CO file
BINTAB EQU “XFAE3 ;lowest address of existed CO
} files ' :
VARTAS EQU “XFAES ;lowest address of Variable *
; table . E
MAKECO: |
3+ Refer HOW TO MAKE NEW DO FILE to know how to find
3 the directory address for new files.
3 o o

MVI A, B10100088
1Set directory flag as CO file
MOV M,A jregister it
PUSH H ;1save directory address
LHLD LENGTH ;get file length of new CO
LXI B,HEADLN;Set header length
DAD B ;Get total length of new CO file
MOV B,H ;Set length in [BCJ]
MoV c,L :
LHLD @ BINTAB' ;CHL] lowest address of existed
$CO files
PUSH H ;Save current BINTAB

LHLD VARTAB ;;CHL] just above highest CO file
CAaLL MAKHOL ;Try to make a hole

JC MEMFUL ; jump if there is no enough rocom
XCHG ;Save the top address of hole
POP H srecover BINTAB

SHLD BINTAB ;Adjust BINTAB

XCHG srestore TOP of hole

- 149 -

RAM FILE HANDLING

POP
INX
MoV
STAX
INX
MOV
STAX

.o we e

XCHG
MVI
LXI
COPYHD:
MOV
STAX
INX
INX
OCR
JINZ

LHLD
MOV
MOV
LHLD

ve

COPYLP:

MOV
STAX
INX
INX
DCX
MOV
ORA

“JINZ

e

CALL

RET

EMFUL ¢

we "L o we we

DATA AREA

* we weo

STARAD: DS
LENGTH: OS

- ~-

$LDEJ directory address

D

D sadvance to address field
A,L ;Set start address

D

0 - 2

A,H H

8]

To register the file name in directory is omitted.

sLDE] top of the vacant room
B,HEADLN;Set header length
H,STARAD;offset of header data

A,M 1Cet header data

D istore’it in file

B

H

B send of header data?

COPYHD jcopy 3 address as header

LENGTH ;Get data length

B,H iset length in” CBCJ

CQH""

STARAD ;[CDE] destination address
;CHL] source address

AM scopy contents of file
D 5

D

H

B scount down

A,B send of data?

C

COPYLP :continue till end of data

LNKFIL ;make up all start address of
sother files in directory area

ERROR HANDLING ROUTINE

memory full error’

- 130 -

RAM FILE HANDLING
EXECAD: DS 2

END

- 131 -

RAM FILE HANDLING

8.8.7 DELETE A CO FILE

ENTRY

® Ve We we we

MASDEL
LNKFIL

BINTAB
HEADOLN

DELCO:

DELETE A CO FILE

¢ CHL] addres of its directory

EQU
£QU

EQU
EQU

MOV
CPI

JNZ
XRA
MOV
INX
MoV

INX
MOV
MOV
PUSH
INX

INX
MoV
INX
MOV
LXI
DAaD
MoV
MOV
POP
XCHG
LHLD

PUSH
XCHG

CALL
POP
SHLD

T ® IOWO®I®IXOL TIrFTIT

“X&C3C ;remove data
“X233A :make up starting address
t1in the directory
“XFAE3 ;lowest address of CO files
é ilength of the header in CO
s file
A,M 1Get DIRECTORY flag
“81810080806
$sCO file?
BADFIL ;;Jump if BAD file mode
A .
M,A ;Clear directory flag
H sAdvance to address field
A,M :Get start address of the CO
sfile
M sCHL] start address
A
?
$save start address
1Get file length in the
3 header :
M ;get length in CBCI
M '
»HEADLN; add header length
o H ;Set total length in CBCJ
L
»
trecover start address
1save it at once
INTAB ;get lowest address of existed
:CO files
1gave it for after adjustment
sCHL] start address
" sCBCJ] file length
MASDEL ;jremove the body of the file
H ;recover BINTAB
BINTAB jadjust BINTAB

- 152 -

RAM FILE HANDLING | o

. -
*

CALL LNKFIL ;make up starting address in
;the directory area

RET
s EXTERNAL ERROR ROUTINE -
BADFIL: :
sBad file mode

END

- 133 -

CHAPTER 9
LCD INTERFACE

This chapter describes how to control LCD (Liquid
Crystal Display) of PC-8281A.

9.1 OVER VIEW

The LCD (LR-202C), full bit map screen which consists
of 240 * é4 dots, displays 49 characters per line and 8
lines per screen. A character on the LCD consists of 6 by 8
pixels. The LCD is driven by 19 Segment Drivers (HD44102B)
with 200 byte= Display RAM and 2 Common Drivers (HD44823b).
Segment Drivers are selected by Port A/B of PPI (81C35).

9.2 CONSTRUCTION OF LCD

, The LCD is divided into the following IC blocks. Each
block has its ouwun Segment Driver with 208 bytes Display RAM.
And each IC block can display 580 * 32 dots. However, BS and
B18 displays only 40 % 32 dots. Of course, you can write
dots on the remaining area of Display RAM of BS and B18 with
no error, but they will never appear on the screen.

' - 154 - | S

LCD INTERFACE

PO 249 dots SE
) T [])] [}] +
t i 81 B2 i B3 i BA | BS |
64 dots +-—— : : : —+
é E Bé E 87 g BS E B9 E B18 E
Fig 9.1

The Display RAM may be regarded as the VRAM 1in the
traditional desk top type personal computer. Setting a Bit
On/0ff in the Display RAM means setting/resetting a dot on

Refer to following sections how to control "~each
Segment Driver.

- 155 -

e

5 LCD INTERFACE

. 9.3 1,0 PORT RELATED TO LCD - =

»
—

9.3.1 BLOCK SELECT --~ PPI 81C55 PORT A/B

mb7?7 &6 5 4 3 2 1 8 1sb

-t -l -dn

< -dn -l b -t
*

PA7 I1PASIPASIPA4 I PA3IPA2IPALIPAL] CUT “XB9
X1 X1 X1 X1 X1 X iPB1iPBG: OUT “XBA -

+ = 4 -

PAB to PB7 is associated to BLOCK1 to BLOCKS
PBO,PB1 to BLOCK9,19 respectively.

@ = Not Select / 1 = Select

Description:

Selecting a LCD Block (same meaning as selecting a
Segment Driver IC) .which you want to access. You
cannot select two blocks at a time.

- 156 -

LCD INTERFACE
9.3.2 LCD COMMAND SET

There are 5 commands to control the Segment Driver IC.
These commands are executed via Port “XFE.

-

9.3.2.1 Display ON/OFF.

DISP OUT “XFE

® 1|~
o
w
(=9
w
N
-
[\]
+-- =

+-- ¢
®

+-- 4
©

+ -~ 4

+--+0

+ --+
®

+ -+
-

+ -+
-

+--4+

Display ON/OFF
%] Display Off
1 Display On

O
-
(7))
U

Bescription:

DISP decides whether the data in Display RAM

is displayed on the screen.
This port doesn’t effect the contents of Display RAM.

- 157 -

LCO INTERFACE

9.3.2.2 Set Address Counter

msb 7 é S a 3 2 ft 8 1sb
PG1!PGA!OFS5!0FA4!OF3!0F2:0F1!0F@! OUT “XFE

-+ -+ -* i d T + e

+ == -

Select PAGE

PG1 PG@

e 1 .—— PAGEQ
e 1 -— PAGE1
1 g -- PAGE2
1 1 -- PAGE3

OFn means 'OF fset counter® in each PAGE.
It must be from 6 to 49. '

The Display RAM is divided into 4(8 to 3) pages and
each page contains 50 bytes (B8 to 49) as shown at next page.
Segment driver has PAGE counter and OFFSET Counter. These
counter is set by this command. The OFFSET counter works as
the loop counter, it's value from 8 to 49. The OFFSET counter
is automatically Incremented/Decremented after read/write
operation. The counter mode is described blow. Page counter

- 18 not changed by read/write operation.

- 138 -

LCO INTERFACE ‘ .

L]

OFFSET‘counter

PAGE 8< >49(3%9 if BS/B18)

counter + + +
i1sbi :

“Boo : H PAGE @ i H
imsbi :
i1sb H

“Bo1 : PAGE 1 H
i m=b !
i1sb :

“B1@ ' PAGE 2 :
! msb d
i msb :

“B11 : PAGE 3 H
i1sb :
Fig 9.2

- 159 -

B R R .

LCD INTERFACE

9.3.2.3 Set Starting Page.

msb 7 é S 4 3 2 .1 e
1 1

.
T -

o

1SPG1iSPG2 OUT “XFE

+ -+
+ -- 4
-
+--+
-

+ == 4i
-

+ ==+
-
+--+

SPG1/8: Specify the Starting Page to be
display on LCD.

SPG1 SPGo Order of Display Page
-—— g =->1->2->3
-— 1 =>2-=->3->0
——— 2 =>3=>0->1
——— 3 =>8 ~->1->2

rRrO®
PrPOrR®

‘Description:

Assume that each LCD block is divided inte 4 pages

corresponding with the Display RAM. The combination

with the Page of LCD Block and Display RAM page can

changed. The °‘SET STARTING PAGE®' defines the mapping

g?tueen the Page in Display RAM and the Page of LCD
ock.

Ex.
Assume that Starting page is =et to 2. Then masping

between Display RAM and LCD PAGE becomes as shown as
fol lows. .

~ 169 -

LCO INTERFACE

LCD BLOCK

Upper

PAGE2 in Display RAM
is displayed here

PAGE3 in Display RAM
is displayed here

4 e emee e ¢

PAGE® in Display RAM
is displayed here

PAGEl1l in Display RAM
is displayed here

]
]
t
1
]
t
]
’
-
-+
]
|}
]
1]
]
'
]
i
<
-+ -
]
[}
t
[]
]
L]
t
J
<
-+
¥
]
1]
]
[]
]
]
'
&
-+

4om e e

Lower

- 161 -

LCD INTERFACE

- .-

9.3.2.4 Select Address Counter Mode

pu e
s s

iU/0f OUT “XFE

———r————

. mab 7 6 S b %)
1] 1

4 3 2
) e 1 e

+-- +
+-- ¢
+-- 4
+ -~ 4
+-- 4
+--+

+ -- A

U/D(Up/Down count) -—- 8 Up Count
1 Down count

Description:

Set OFFSET Counter Mode.

- 142 -

LCD INTERFACE .

e -8

9.3.3 Read Status =--- Read The Status Of Segment Driver.

msb 7 é S -4 33 -8 1sb
{BUSY ! UP/DOWN ! ON/OFF IRESET I XXXX | IN “XFE
RESET ====- Status of the RST pin
8 Normal
1 RST is low level
(BUSY must be 1)
ON/OFF ====- Display ON/OFF
%) Display OFF
1 Display ON
UP/DOUN —===- Mode of Address counter
2] Down counter
! Up counter
BUSY —=—==
%) Normal
i Operating Command or

Writing/Reading a data.

~ 163 -

T TR T TN

LCD INTERFACE | g

9.3.4 Urite/Read Display Data

B e s B s S

107106:05:04:D31/02:D1:09 INAOQUT “XFF
S s D e s S &

Description:

Read the data from the Display RAM that is pointed by
PAGE and OFFSET counter. If you want read some portion
of the Display RAM, use this command after Setting the
PAGE counter and OFFSET counter by 'Set Address
Counter® command and °Set Page Counter’ command
described before. Note that one dummy read must be
done before using this command in order to get a

correct data.

- 1864 -

LCD INTERFACE

9.4 SOFTWARE FOR LCD

without

This section describes not 6nly how to handle the LCD
reading the routines stored in ROM #@ about LCD, but

also how to maintain the book-keeping area for LCD in the RAM.

9.4.1

Segment

How To Initializg The LCD.

What should be done in initialization is following.

1) Set up Address counter. Usually Page 8, Offset 0.
2) Set up Offset Counter Mode.

3) Set up Starting Page.

4) Select Display ON/OFF.

The tiny program shown blow initializes LCD's all
Drivers as below.

PAGE COUNTER = @
OFFSET COUNTER = @
UP COUNTER MODE
STARTION PAGE = @
DISPLAY ON

Note:
Whenever the power is turned on, LCD is initialized by

the reset pulse of the hard wear. At that time,
Display is turned OFF, Offset Counter is set to count

- uUp mode. Another status is not determined.

The ROM #8 always reinitializes LCD as Display ON,
Starting Page = 8 and Offset counter count up mode
when a character is displayed.

- 165 -

LCD INTERFACE _’

9.4.1.1 Sample Program For LCD Initialization.

we weo Vo

j==— Equaters ---

PORTA EQU
PORTB EQU
LCOCOM EQU
LCOSTAT EQU

LCOINIT:
A/B

(34
CALL

CALL
XRA
ouT

CALL
MVI
ouT

CALL
MVI
ouT

CALL

MVI
ouT

LCDBUSY:

“XeB9
“X@BA
“X8FE
“XGFE

SELALL

LCDBUSY
A

‘Initialize Segment driver.

LCOCOM .

LCDBUSY
A, “X3B
LCOCOM

LCDBUSY

A, “X3E
LCOCOM

LCOBUSY
A, “X39
LCDCOM

3 Wait until LCD become

IN
RLC
JC
RET

SELALL:

LCOSTAT
LCOBUSY

Ready.

3 Select all Segment Drivers

- 166 -

we s -e

-e

-e

e we e

-3

Inhibit disturbance for Port
Selecf all Segment Driver.
Wait until LCD become Ready.

Reset Address Counter.

Offset counter Up mode.
Set starting PAGE=0

Display ON.

Get LCD status.
Move MSB to CF.
Wait if LCOD is busy.

LCD INTERFACE

MVI
ouT

ORI
ouT
RET

END

A, “XFF
PORTA
PORTB

PORTB

- 167 -

.
’
.
»
.
’
.
’

BSh
Get current status.
Select block 9,10.

LCD INTERFACE .

=3

9.4.2 How To Write A Charactér.

Writing a character on-the:LCD is performed by writing
some‘Bit patterns in the Display RAM of Segment Driver.

Basic sequence of writing a character on the LCD is as
follows.

1. Select LCD Block(Segment Driver) which you want to PUT a
character. . ’

2; Sét the Offset counter mode.(Usually Up mode)

3. Set the Address where 1st byte should be written.
4. Urite the Bit pattern.

S. Set Starting PAGE counter

é6. Insure Display ON.

rf. Next sample program.

- 168 -

LCD INTERFACE

9.4.2.1 Sample Program Of Writing A Character On The LCD.

- This Sample program shows how to write a character on
the LCD. This routine updates the pointers which is used by
System ROM, ROM #8, to maintain the system circumstance.

Sample program to write a character on LCD.
This program performs same function as the following BASIC
program. '

10 LOCATE @,0
20 PRINT ‘A°

36 END
CSRY EQU “XF3ES $ Cursor Y position
: (1 to 8)
CSRX EQU “XF3E& { Cursor X position
' : (1 to 48)
LCTEY EQU “XFEB9 3 Character Y Position
: (B to 7)
LCTEX EQU “XFEBA { Character X Position
H (B8 to 39)
PORTA EQU “XBS : Segment Driver Select
. s Port. v
PORTB EQU “XBA ;s ditto '
LCDCOM EQU “XFE s LCD command Port.
LCDSTAT EQU “XFE s LCD Status Port.
LCDIO EQU “XFF ; LCD data I/0 Port
' ORG “XF209 s 614406D :
LOCATE:
s+ LOCATE 0,8
LXI H, X0181 ; To set cursor position
1 (90,0)
SHLD CSRY H
LXI H, “X0809
SHLD LCTEY
PREP:
3—— Select Block 1 to write (1,1)
DI s Inhibit disturbance for

Port A/B of 81CS3.
You need not do DI as
far as no one

we we We »

169

LCO INTERFACE

MVI
ouT
IN

ANI
ouT

CALL
 MVI
. ouT
CALL
MVI
ouT
CHROUT :

LXI
MVI

WRITE:

ENTRY: CHL3

A, “X01
PORTA
PORTB
“B11111
PORT8B

LCDBUSY
A,B
LCDCCM

LCDBUSY
A, "BBOG1
LCDCOM

H,FONTA
C, " Xeé

we we we

160

10010

Write data to Display RAM of LCD

b
changes the data port of :
81CS5SS. You have to consider
other INT routines.
Sg]ect Block 1
Get current status.
Deselect Block 9/10.

Wait until LCDO become ready.
Page B,0ffset 0.

Offset counter Up mode.

Get start Address of Font A.
Set Font size.

Font start address.

CCl .= Length
CALL LCDBUSY
MoV A,M
ouT LCOIO
INX H
OCR C
JNZ WRITE
LXI H, CSRX
INR M
LXI. H,LCTEY
INR M

3———- Set starting pagé
MVI - A, “XQFF
ouT PORTA
IN PORTB

of Font.

Wait until LCD become Ready.
Get font Pattern to send.
WUrite to Display RAM ¥ LCO.
Up date PTR.

Bump Counter.

To send next pattern.
Offset counter is Auto
increment Mode, so we don’t
care about OFFSET counter.
Up date Cursor PTR.

No check for end of line in
this program.

$ Select all Block.

- 170 -

LCO INTERFACE) .

ORI ~ ~B@GGGGB11
ouT PORTB
CALL LCDBUSY s Wait until LCD become Ready.
MVI A, “X3F. 3 Starting page 6.
ouT LCDCOM H
MVI A, "X06111601 3 Insure display ON.
ouT LCDCOM
El '
RET

LCDBUSY:
IN LCDSTAT $ Get LCD status.
RLC _ 3 Move msb to CF.
JC LCDBUSY
RET

FONTA: DB “X3C, "X12,°X11 ; Font data for ‘A"
D8 “X12, “X3C, “ X80
END

=171 -

LCD INTERFACE .

'9.4.3 How To Set/reset A Dot On The LCD.

. The Sample program shown blow explains how to
set/reset a dot on the LCD. It does same function as the
following BASIC program.

168 CLS

118 FOR Y=%9 TO 22
120 FOR X=68 TO 8@
136 PSET(X,Y)

140 NEXT X

158 NEXT Y

168 °

176 FOR Y=14 TO 18
180 FOR X=64 TO 76
150 PRESET(X,Y)
280 NEXT X

218 NEXT Y

228 END

9.4.3.1 Sample Program For SET/RESET Dot.

Sample program for SET/RESET a Dot.

e we we

PORTA EQU “XB9S ;s LCD block select.
PORTB EQU “XBA s //
LCDCOM EQU “XFE s LCD command.
LCDSTAT EQU LCDCOM 3 LCD status.
LCDIO EQU “XFF s LCD data 1/0.
PSET: '
DI ; Disable all interrupt
; to keep correct block
select.
XRA A s To set SET flag.
STA SR : Set/Re=et Flag.

- 172 -

LCD INTERFACE

- 173 -

LXI B, “X14BE -3 [BJ=20 X count,[CI=14 Y
count. .
LXI H, “X0AB9 3 CHI=X Position,CL1=Y
Position.
PSET1:
: PUSH H -3 Save (X,Y) Position.
PUSH B ; Save X,Y count.
-CALL MAIN
POP B ; Restore X,Y count.
POP H :{ Restore X,Y position
INR L ;s Advance Y position.
DCR C 3 Bump Y counter.
JNZ PSET1
PRESET:
MV.I A, “XFF ; To set SR Flag.
STA SR { Set Unplot Flag.
LXI B, “X8C0s s CBl1=12,CC1=86
LXI H, “X8EBD s (CH3,CLIY»=(14,13)
PRESET1:
PUSH H : Save X,Y Position.
PUSH - B s Save X,Y counter.
CALL MAIN
POP B ;s Restore X,Y counter.
POP H ; Restore X,Y position.
INR L ;s Advance Y position.
OCR C $ Bump Y counter.
JNZ PRESET1
RET . ‘
MAIN:
$ CHl = X position
3 CL] = Y Position
H [B] = X count
H CC] = Y count :
PUSH H ;s Save X.Y Position.
CALL DOT ;s Plot/Unplot a dot at (X,Y)
POP H $ Retrieve Position.
INR H s Advance X POSITION.
DCR B 3 Bump X counter.
JNZ MAIN H
RET
DOT:
CALL LMAIN
LDA SR ;s Get SR flag.
ORA A ; See if set/reset?
JNZ RESET ;s Branch if Reset.
MOV A,E ; Get MASK pattern.

LCD INTERFACE

JMP
RESET:
MOV

ANA

DIsP:

MOV
CALL
DI
MVI
ouT
IN
ORI
ouT
CALL
MVI
ouT
CALL
MVI
ouT
El
RET

LMAIN:
cLd

Reg:

ENTRY: CHI~

PUSH

PUSH
CALL
CALL
CALL
POP
CaLL
POP
CALL
RET

WRITE:

e we ‘wo

caLL
MOV

D,A
WRITE
A, “XFF
PORTA

. PORTB

“BQGGO0011
PORTB
LCDBUSY
A,"Boo111111
LCOCOM
LCOBUSY

A, B0011106081
LCDCOM

we 0o we

e we

CAl = data to write.

Get Mask Pattern.
Reverse MSK pattern.
CA]l = data to write.

Select all Block.

See if Lcd Busy.
Starting Page 0

Display ON.

X position in Block-1
Y Position in Block-1

H

H

SEL2
SETADR
READ

H
GETMSK
H
SETADR

Func: Output CODAT] to LCD.

Reg: A and Flags.

LCOBUSY
A D

- 174 -

e

we We WO Be WO we

Save X,Y poéition.

Select Block=2.

Set Address of Display RAM.
Read the LCD. -

Retrieve X,Y position.

Get Mask Pattern.

Retrieve (X,Y) Position

Get Datavto write.

LCO INTERFACE"

LCDIG

;s Must be EI

]
.

4
at final.

CDJ = Current Data in Display RAM.

A,D0 and Flagsa.

LCDBUSY
LCOIO

LCDBUSY
LCDIO
D,A

Y Position

Mask Pattern.

A,L,E and Flags.

A,L
“B@goee111
L’A

A, B8@

L
MSK1
E,A

Wait until LCD become Ready.
Dummy Read.You must do this

.o we

get correct data.

Get Valid Data.
Save it.

Cet Y position.

we Wo we

Set counter.

Bump counter.
Branch if not finished.
Save Mask pattern.

X Position on Block=2
Y Position on Block=2

Set Address

ouT
NOP
RET
READ:
; Entry: Non
: Exit:
; Reg:
cAaLL
IN
to .
CALL
IN
MGV
RET
GETMSK :
s Entry:s CLI
: Exit: CEJ
; Reg’
MOV
ANI
MOV
MVI
MSK1:
RLC
DCR
JP
MOV
RET
SETADR:
; ENTRY: CHJ
H £L
; FUNC:
; Register:

A,H,L and Flags.

MOV

A,L

- 175 -

; Get Y position.

LCD INTERFACE

. RAL
RAL
RAL
ANI
ORA
MOV
CALL
MOV
QuT
RET

LCDBUSY:
Entry: Non

Exit: Non

VO We WS VO Ve We wWe we

IN
RLC
JC
RET

SEL2:

DI

MVI
ouT
IN

ANI
ouT
RET

SR: 08

END

Select Block=2

“B11060000
H

L,A
LCDBUSY
A,L

LCDCOM

Reg: A and Flags.

LCOSTAT
LCoBuUSY

Reg: A and Flags.

A, "B000BB0G10
PORTA

PORTB
"B111111686
PORTB

@9

- 176 -

-4
.

Move Bitd/3 to Bit7/6é.

Get page.
CAJl = Page and OFFSET.
Save it.

Wait until LCD become Ready.
Retrieve Address.

Func: Wait until LCD become Ready.

Get LCD status. .
Set Busy FLG to CF.
Wait if LCD is BUSY.

Select Block=-2

Set/Reset flag.
B=set/FF=reset.

LCD INTERFACE

9.4.4 How To Define A Character

This section describes how to define the User
Definable characters in PC-8281A. And how to store them in a
portion of RAM where ROM #8 can use this your new Fonts. In
this section, BASIC command will be used to do some operation.

9.4.4.1 Structure Of Character And How To Define It.

One character consists of 6 * 8 dots. Vertical 8 dots
is handled by a byte. So in order to define a character, you
must define Sequential 6 bytes of data. The data “X3C, ~X12,
“X11, °X12, “X3C, °“X00 define ‘A°' as follows.

- 177 -

[
'

LCO INTERFACE

<"“X3C,"X12,°X11.°X12,“X3C, "X3C, “X88>
'A.

s CG pattern for

18,2

Font pattern

S

4

3

2

1

1

9

4

el R
I
I
I B
it Sk el el
L ix i
i Sl el
| x|
P
Hnt S Sl
x 1
{ |
Rl Sl S
"
Lf--*T--q--ﬁ--
boxlox
S I SN S S
R S ST
(o] (8] (8] (o]
R R el
(] (¢ - Lo}
-t -4 -t -
(] - (] (o]
L L .
! (o] (o] (o]
it SR S
(8] -t (] o
e SRS R
(8] (o] -t Lo}
S JETAE R A
0

DATA Pattern

N <« N M < 1N 0 M~

b oot - b - 4 - 4
|
T-#--LTLT-%
x X x
St JETIE SO S
x .
SRk JCIE IR AP
b 3
RS JETIE SRTAE SRR
* .
JREIE ETIE SR e
X X x
b om 4t ee e -
JRait JERIE JETE R
ololo
SRIE SETIE SRR P 5
"l o®
Sit JETE JPPR R 4
“lolo|lo
SRl S R i
—Hilololo
SR IR AR R |
“Hlololo
F o= 4 -+ -- - ¢
HlHlHl®
R ik T I
o
)]
E

“X3C “X12 “X11 “X12 “X3C “Xx99

Fig 9.4

l
R
-~

|

LCD INTERFACE o

- -

9.4.5 How To Store The Your Ouwn CG

‘This section explains hou to store USER CG in to RAM
which also can be used by ROM #9, -1

Assume that you have to define Fonts as described in
the previous section. Each Font consists of 6 bytes. Font
Data has been BSAVEed in the RAM F11e named °FONT.CO®', whose
start address is “XYYZZ.

You can make °'FONT.CO" in the following seqguence.

1. Reserve area for ‘FONT.CO" by CLEAR command in BASIC.

CLEAR <length>, <startaddress>
2. Load "FONT.CO" into RAM

 BLOAD "FONT'
3. Register the top address of the CG.

POKE “Dé5216,{Start Address (High byte)>
POKE ~D65215,<{Start Address (Low byte)>

After this sequence, ROM #8, for instance, BASIC, can use the
‘new DOefined CG.

- 179 -

LCO INTERFACE | | :

9.5 AVAILABLE SYSTEM WORK AREA

This section explains'héu £ use the system Character
Generator and how to use the available System work area.

9.5.1 How To Use,The CG In System ROM.

You might want to use the CG of ROM #8 instead of
making new CG by yourself. In such a case, this Section will

help you.

The Character Generator of characters whose code 1is
from “X20 to "X7E , are stored in the highest portion of the
ROM #8, from “X78B7 to “X7B37. Each Character consists of 5
bytes. The sample program shown blow explains how to get the
character pattern and how to expand it intoc the standard
shape, 6 * 8 pixels. Assume that this program is written to
be stored as the CO Fx]e in the RAM files and uxll be executed
with ROM #Q3.

ENTRY CAJ = character Code ("X28 to “X7E)

e we weo

EXPAND:
SUI A, X289 3
ADD Cc 3 *2
ADD A ; *4
ADD Cc .
MGV C,A 3 CC] offset from base of CG.
MVI B, “Xee 3
LX1I H, CGADR
DAD B
LXI B, TEMP
MVI D, “XS ; Set font data length.
NEXT: :
MOV A,M ; Get Font data.
STAX B
INX H
INX B
OCR 0

- 180 -

LCD INTERFACE

JINZ
ORA
STA
RET

NEXT
A
TEMP+5

- 181 -

LCO INTERFACE -y

U, TS
9.5.2 VRAM AREA IN SYSTEM UWork Area

The area from XFBCO to XFE3F in the RAM, is reserved
for VRAM area of <the LCD. ~It is divided into 2 portions.
Each portion can be hold the character codes displayed on the
LCD at a time. So the each portion has 320 bytes. The
attribute data is not saved in this area. Only the character

code is stored.

ist *XFBCO~"XFCFF ;s Keep previous Page
: s in TELCOM.
2nd *XFDQQ~-"XFE3F 4 Current Displayed

character is Saved.

The character code of the character displayed at the
location (1,1) on the LCD display is stored at “XFD8G, and the
code of the character at (2,1) is stored at “XFBC1 , and so
on. So the code of the left-lowest character, (40,8) is
stored at “XFC3F. This rule is used in the standard program
in ROM #38. For instance, BASIC, TEXT and TELCOM use that area
like a VRAM in the traditional disk top personal computer.
The menu screen also utilize that area. But You can use this
area as you like. The data in this area doces not effect the
information on the LCD display, as far as you use your own
display routine. ‘ :

- 182 -

LCD INTERFACE

9.5.3 -Reueéé;thé'Attribute Of The Specified Area.

ROM #8 has the Reverse Attribute Table in Work Area.

The attribute data is kept in the area from “XFA48 to
“XFA87. Each bit represents the each character Box on LCOD.
(Therefore only 49 bytes can be handle the attribute of whole
LCD screen.) When the bit is off (8), it shows that the
character Box is displayed in normal mode. And the bit 1is
turned on, 1, that character Box is displayed in Reverse mode.
The relation between the Attribute bit and Character Box is
shown blow. The relation of the reverse attribute bit and

each character box is as follows.

PC1,100¢ 2,1)0C¢ 3,1)4 1(3%9,1)1¢40,1)!
O 1,2)1C 2,21 3,2)17 1(39,1)1¢40,1)1
+ -
1 1,8)1¢C 2,8)1(3,8): 1(39,8)1(40,8) 1
+ 4 -+

“XFA6B Bit@ -- (91,1)
Bitl -- (02,1)
Bit2 -- (03,1)
Bit3 — (04,1)
Bit4 -- (85,1)
- BitS -- (86,1)
Bité . - (87,1)
Bit? — (@8,1)

“XFAé1 Bit@ -= (09,1)
Bitl -- (16,1)

“XFAS?7 Bit8 -- (33,8)

Bitl -- (34,8)
Bit2 -= (35,8
Bit3 -- (36,8)
Bitd - (37,8)
BitS -— (38,8)
Bité -- (39,8)
Bit7 -- (40,8)

- 183 -

CHAPTER 18
KEYBOARD INTERFACE

16.1 THE KEYBOARD MATRIX-

The Keyboard matrix of PC-8281A is as Fqllous.

Kesboard Data Fbrt .

- K2e kPl koA k83 KT‘.’- kof kBé ka7

L [

L

I |
ZHAXHFCHVhBmN MM L PAo
- T T T . T Ke;r
. K P——FAL
T T 1T T ' T 0 Strote
aHwHe HrHTHyHuHT F—n2 Port
l L l | !
O HP e~ AL M ar—"ms
l H o TR L |
: /
T 1 1
> L= 1LF 1=
3 _9_]._ P2 L e —ar
N I s g e T T
“H T HY H+H =Y e
l I N | l
LLHE S HELHEC e PAT
IS I) I ’
RIFT—CTRU tﬁﬂ] CABS, P8O
Fig 16.1

- 184 -

KEYBOARD INTERFACE

The abbreviation PAn (PA7, PA&, ..., PAB) and PBn
means the bit of PORT A and B of 81C55. Please refer to the
following sections about I/0 ports. And also, KDn (KD7, KDé

ey KDB) represents the bit of the KEYIN, Input port for the
Keyboard. - -4 . +

Note: °/' means (SHIFTED CODE) / (UNSHIFTED CODE)

~ 185 -

KEYBOARD INTERFACE _ ,
16.1.1 I/0 Port For Keyboard

16.1.2 KEYBOARD STROBE ----- PART A/B Of 81CS35

4 . L= -4

msb? 6 S 4 3 2 1 9 1sb

b P P P P < b

KS71KS61KSSIKS41KS31KS2!1KS1iKS@: OUT "XB?

L

+ =+ ==

X1 X1 X1 X1 X1 X1 X'IKS8 O0UT “XBA

—

KS8 ... KS@ KEYBOARD Strobe
@ = Strobe OFF
= Strobe ON

- 186 -

KEYBOARD INTERFACE

]

16.1.3 KEYIN ——=—- Read Keyboard Data

msb 7 6 S 4 3 2 1 @ 1sb
1KD7 !KD6 !KDS | KDA4 |KD3!KD2!KD1!KD8! IN ~XEB
O SV

KD?7 ... KD@ ---- Keyboard data
' %) Depressed
1 = Not depressed

Read the strobed column of the keyboard. Please refer
to KEY MATRIX shown before to understand the relation between
KDn and Key on the key board.

- 187 -

KEYBOARD INTERFACE

-4

16.1.4 Keyboard Scanning

Key scan must be performed by software. It can be
done by the interrupt, RST 7.5. The RST 7.5 Pin of 806CSS is

connected to the TP Pin(No.18) of calendar clock (uPD19%6).
So that interrupt occurs every 4 msec in the standard system.

- 188 -

KEYBOARD INTERFACE | . 5

' 19.2 SOFT WARE FOR KEYBOARD OPERATION.
19.2.1 How To Read The Keyboard

Basic Keyboard read sequence is as follows.

1. Turn on the strobe pulse to the desired column you uént to
read.

2. Read the column from KYIN port.

3. Strobe off

The following Sample program shows how to read the Keyboard in
detail.

- 189 -

KEYBOARD INTERFACE

10.2.1.1 Sample Program Reading Keyboard.

Following Sample program read the every column and
save the data into the KYBUF(Keyboard Buffer).

e VO WO WO WO WO we we

Equator

PORTA EQU
PORTB EQU
KEYIN EQU

ORG
READKEY:

LXI
MVI
ouT
IN

ANI
ouT

IN
STAX
IN
ORI
ouT
MVI

NOMAL :
INX

ouT
MoV

STAX
MVI
ouT
MoV
RLC

Read CURRENT KEY BOARD STATUS.

“XB9%
“XBA
“XES

“XFeeo

B,KYDATA
A, “XFF
PORTA
PORTB
“XFE
PORTB

KEYIN

B

PORTB

“X01

PORTB
A,"Bl11111110

PORTA
0,A
KEYIN

A, “XFF

PORTA
A,D

- 198 -

Ve VO VO Ve WS Ve VO Vo VS We VO we e W we

-e We we

-e we

we we we

Note: Make sure Keyboard strobe is
not disturbed while reading the key board.
- You have to care of the other interrupts.

Keyboard Strobe Port
ditto
Keyboard data Port.

GCet PTR for buffer.
Disable normal key strobe

Get PortB Status.

SET B@=0ff.

Activate Strobe for
Special key.

Read keyboard.

Save Data.

Get Status of Port B.

Set B@=0n.

Strobe off.

Prepare PTR for key Buffer
for next data.
Strobe On

GCet data.
Store it.

Strobe off.
Retrieve strobe data.
Strobe for next column.

KEYBOARDCE

11
< JC NOMAL - :
RET $ All done return to caller.
*pS 1 “s PB@ column
0S 1 s PAB ditto
DS 1 s PA1 ditto
DS 1 s PA2 ditto
0S 1 s PA3 ditto
0S 1 s PA4 ditto
0S 1 s PAS ditto
DS 1 ;s PAé ditto
DS 1 s PA7 ditto
s Be careful that
s Bit OFF means key
{ is depressed.
END

- 191 -

CHAPTER 11
CMT INTERFACE

The physical interface of the CMT is described in this
chapter. You can find how to control the Motor of the CMT,
how to write a data to the CMT and how to read a data from
CMT.

There is no description about file ' record format of
PC-82061A. If you want the information about it, please refer
to another technical manual about PC-8281A, which has already
been released by NEC HE in Chicago.

- 192 -

'CMT INTERFACE

— -3

11.1 HARDWARE FOR CMT

PC-8201A has the CMT. interface for reading/uriting
data with Audio Cassette. :

Reading/writing data with CMT is done via SID Pin ,S0D
Pin of CPU(8GCS8S). And Motor is controlled by SCP (System
Control Port,"X98). The on-bit, Logical High, is represented
by 2400Hz wave (called MARK) and the off-bit, Logical Low, is
1200Hz wave (called SPACE). So the Baud Rate of the CMT can
be up to 12090 bps, bit per second. (System ROM, ROM #8 Uses
688 bps to maintain the compatibility with PC-8681A.)

- 193 -

CMT INTERFACE

11.1.1 Writing Operation.

While SOD is high, MARK is put out to MIC and TxC.
Otheruise, SPACE is put out. Refer the next illustration.

high e o +
SIO

low

MIC/TxC i < MARK):(SPACE):(MARK > 1 <{SPACE> I MARK

Fig 11.1

- 194 -

CMT INTERFACE ‘ o

11.1.2 Reading Operation.

Input wave from EAR Pin' is“teformed to Square wave and
sent to SID Pin of 89C85 as shown blow. The input wave is
inverted on the way to SID Pin from EAR Pin. In reading
operation, the electric high/louw. level has no meaning. The
pulse frequency indicate whether high or low of the data. The
frequency, 2408Hz means logical high ,and the frequency,
1299Hz means low.

EAR —=--- 1{== MARK =-=-=)>{{=--= SPACE -~-—- >
—; d=t b=t b=t ;--+ T ;--—
sol] -———- I e e e
=+ =t b=t d=t bem—d Fm—=t b=}
2498H=z ' 12606H=z

Fig 11.2

e e - 195 -

CMT INTERFACE
11.1.3 Baud Rate Generation;

Baud rate is Generated by software timing routine. In

. Wwriting operation, the bit data fior SO0 Pin is set and it is
held during the proper duration by the software wait-routine.
On reading, a bit data is read in proper interval which is

controlled by softuware. Refer to the following section " about
the software. :

- 196 -

CMT INTERFACE ’ | S

11.1.4 1/0 Port For CMT
: 11.1.4.1 SCP —--- SYSTEM CONTROL PORT

I/0 Address and Data Pattern

msb 7 é S a4 3 2 -0 lIsb
+ e + + + + '
XX XX T XX 1 XX IREMOTED XXXXXX OUT “X9@
t————t + + + + +
REMOTE CMT Motor control.
8@ = CMT Motor OFF
1 = CMT Motor ON
Description:
The current status of this port is saved at

SYSSTAT("XFE44), so you have to update this area when
you want to change the status of this port.

11.1.4.2 PPI 81C35 Command Set

I/0 Address and Data Pattern

b———t
1 TM21TM1

-+ -

. e A
T 7240101 OUT “XBS

]
b
-+

msb 7 & S a4 3 2 1 @ 1sb
%] %]

+-- +
+--+
+--+

]
———t

]
atn
-

T™M2/1 Timer Command for PPI

CMT INTERFACE

cp

--- NOP

-—-— Stop
——= Stop after Terminal Count

-—= Start i

H.—aomg
N
_.‘
rPrOrRrPOX
fary

- 198 -

CMT INTERFACE

"11.2 SOFTWARE FOR CMT

11.2.1 CMT

MOTOR CONTROL

CMT Motor on/off is simply performed by having access
PORT, SCP (System Control Port; “X98). Output to
at the bit 3 starts the CMT.Motor, and with off at

to the I1/0
SCP with on
bit 3 stops

Please make

LDA
ANI
RNZ
ORI
ouT
STA
RET

) we ve we

MTOFF:
LDA
ANI
ouT
STA
RET

it.

sure to update SYSSTAT(XFE44) in work Area.

“XFEA44
“B11116111

"B000GG10606
SCP
“XFE44

:Turn off CMT Motor.

~XFEA44

~811110111

SCP
 “XFE44

- 199 -

we we we we Wo we

“e we we we

Get SCP port status.

See if Motor ON?
then return.

Bit 4 on.

Turn on Motor.

Up—date Scp status.

Get SCP Status.
Bit 4 OFF.

Turn off Motor.
Up—-date SCP status.

CMT INTERFACE ‘

- ~&

f1.2.2 Baud Rate Generaéibﬁ

‘- Baud Rate must be generated by software timing
routine. The CPU uses 2.4576MHz clock, so the time of 1 bit .
output/input should be counted with this clock. The seguence
of the counting operation is shown plou.

! BAUD RATE ! NUMBER OF STATE !
H i for 1 Bit H
' 75 bps | 32448 :
- +
L 150 L 16224 :
. 300 : 8112 :
T 600 : 4856 :
+ + -+
{1200 : 2028 :
fm———— + -+
Fig 11.3

- 206 -

CMT INTERFACE .
11.2.3 UWrite A Data To The CMT

Writing a data to the CMT is perFoFmed by controlling
, SOD pin. Following sample program;illustrates how to write a

byte to the CMT.
Sample Program for writing data to the CMT

Write a byte to the CMT,the lowest routine.
Assumption:
CMT Motor rotating regularly and CALLED
Interrupt disable.
INPUT: CA] = Data to be send.
OUTPUT: Non.

BAUD Rate = 400 bps

t WO WO WO VO VO WO Ve WO W VO VS e Ve VO we

RITE:

MOV B,A 3 4: Save data.
MVI A, XS0 H 7: Write start bit.
SIM H 4: -
CALL HOLD s 18: Wait 4043 State.
IN PGORTC - 18: Dummy to adjust timing.
MQV c,08 H 4: Set data length in bit.
BYTEO:
MQV A,B H 4: Retrieve data.
RLC H 4: Set a bit in CF.
MOV B,A H 4: Save data.
MVI A, “XDe H 7: To send MARK.
JC - BITO $318/7: Branch if HIGH.
MVI A, X506 3 7: To send SPACE.
BITO:

SIM 4: .

- CALL HOLD 18: Wait 4818 state.
OCR C 4: Bump counter.
JNZ BYTEO 18/7: To send next bit.
MVI A, “XD@ 4: To send stop bit.
RET B: It is responsible to

CALLER Routine for

making

an adequate

length of the stop
bits.

WO WO Yo VO Yo VO we Ve we e o
[N

- 201 - e

CMT INTERFACE ' .

HOLD1 gives
24 ®» [HL] + 7 (+18) '
atates delay. (+18) means °'CALL"’ instruction Status.
So HOLD gives 4043 states delay including °"CALL' of Caller.

® we we weo o

4 » e -d

HOLD: .

LXI H,167 3 10: For 1 BIT (é006Baud)
HOLD1:

BCX H H é:

MOV A,L H 4:

ORA H H 4:

-JNZ HOLD1 $10/7:

RET s 18:

- 202 -

' CMT INTERFACE ,

11.2.4 Reading A Data From The CM?

Following sample program shows how to read a byte form
CMT.

Sample Program for Reading a BYTE.
Assume Called with Interrupt disable.

A we we we

EAD:
' CALL BITI s 18: Search for start
JC READ 318/7: Wait until Start bit
H ¢ has come.
LXI H,?777? ;s 1a@:
CALL HOLD1
) MVI c,8 H 7: Read 8 BIT.
BYTEI:
CALL BITI s 18:
MOV’ A,B H a4:
RLC H 4: Move CF to Bit-9.
MOV B,A. : 4:
DOCR (o H 4: Bump counter.
JNZ BYTEI 310/7: Read next BIT.
RET .3 10: No check for Stop bit.
s Get a BIT.
s EXIT: CF = 1 if MARK.,
H CF = 0 if SPACE.
BITI: '
.CALL SYNC s 18:
MOV A,D H 4: Get counter.
CPI 16 H 7: See whether MARK
H ¢ or SPACE.
3 ¢ If MARK then CF=1,
' H : else CF=9.
PUSH PSW ;s 12: Save CF.
LXI H,?7?7? : 10: Assume MARK.
JC BITI1 $18/7: Good assumption.
LXI H, ??7? ;s 10:
BITI1: :
CALL - HOLD1 ;s 183
POP PSW s 1@

- 203 -

CMT INTERFACE
_ RET | S e 10

Calculate Pulse Duration.

EXIT: CDJ = loop count in this rioutine.

(f) we we wo we wo

YNC:

MVI D,36 . H 7: Reset counter.
H ¢ Margin is about 18%.

RIM 3 a:
ANI “X88 H 7: Isolate SID bit.
MOV E,A : 4:S5Save it.

SYNC1:
RIM H 4: Get Current status.
"ANI “Xse 3 7: Isolate SID bit.
CMP E H 4: Same status?
JZ SYNC1 318/7: then wait.

SYNC2:

. RIM : ¢ Get current SID.
DCR D H 4: Bump counter.
JZ SYNC 318/7: Too long,Restart.
ANI “X88 3 7: Isolate SID.
CMP E H $
JNZ SYNC2 310/7:
MOV A,D. 3 4: Get result.
CPI 11 3 7: Too short?(3%92 astate,

3 ! margin 208%)

JNC SYNC 318/7: then restart.
RET s 10:

- 284 -

CHAPTER 12
SERIAL INTERFACE

: PC-8201A has 3 channels of Serial Interface. They are
used by RS-232C, SI01, SI02. The difference between SI01 and
SI02 is only the shape of connector.

This chapter describes how to control the Serial Port.

.= 285 -

SERIAL INTERFACE

12.1 HARDWARE OF SERIAL INTERFACE- -+

UART(6482) and PPI(81CS5S) control the Serial
Interface. Since they are shared *by 3 channels, Only one
channel is available at a time. Refer to the °‘PC-8281A USER’S
GUIDE® about capacity of the hardware.

—- 206 -

SERIAL INTERFACE

120101 I/O Por‘t

12,1.1.1 Channel Select -- (System*Coﬁtro] Por<t)

1/0 Address and Data Pattern
sb’
OUT “X9@

msb 7 é S -0 1
fommm -t +

1SRIZ2ISRIL! XXXXXXXXXX

- -+ -

SRI2/1 Serial Interface Select.

SRI2 SRI1 User
%] @ =-——-— Not Used
2] 1 -——— SI02 (Disk Driver)
1 g ---- SIO1
1 .1 =—-=-- RS-232C

Note: Current status of this port is saved
in SYSSTAT ("XFE44) by System ROM.

- 207 -

|

SERIAL INTERFACE

12.1.1.2 UART Mode Contrel

.msb 7 - S

a 3 -2' 1 @ 1eb
+ + TR ORI -

XXXXX

.

1CLS2ICLS1:! PI IEPEISBS! OUT “XDS8

+ -- A

sBS

EPE

*r -+ -+ -+ -

Stop Bit Select
@ =1 bit
1 =2 bits (%)

(%) When Data length is 3 bits,
Stop Bits is 1.3 bit.

Even Parity Enable
@ = 0dd Parity
1 = Even Parity

- (Meaningless if PI = 1)

PI

CcLs2/1

Parity Inhibit

@ = Parity Enable.

1 = Parity Disable
Character Length Select

“B@G8 = S bits

“BO1 = 6 bits

“Bi1@ = 7 bits

“B11l =

8 bits

- 288 - N

SERIAL INTERFACE

+ 12.1.1.3 UART Statis Read =

I1/0 Address and Data Patterﬁ
. mm <
2 1 8 1Isb

FE

o
N
w

IN “XD8B

+--+0

OE ided/dr

.

+ -+
+ -- ¢

XXXXX {TBRE! PE

+--+

ded/dr DCD/DR on off (8=on/1=off)

OE Over=run Error (l1=Detected)
FE Framing Error (1=Detected)
PE .Parity Error (l1=Detected)
TBRE Transmit Buffer.Register Empt?

1 = Ready to receive data to transmit.

- 209 -

SERIAL INTERFACE

“12.1.1.4 UART Baud Rate (PPI 81CSS Timer Section)

1/0 Addrexd Data Definition

- S |
t msbé6 S5 4 3 271 79 1sb

- 4o 4o 3 - -t

:EZ :T13!T12:T115T193T89£f083 OUT “XBD

;?BélTGSfT845T83:TG2:T81:TGG: OUT “XBC
d———t + + + + +———t

P " Specify timer output Mode

“B@B = Single Square Wave -
“B81 = Continuous Square Wave
“B1@ = Single Pulse On

“B11 = Continuocus Pulse

-
set a Baud Rate use blaw value.

ud Rate j “XBC E “X8D -_T
75 i e E 48 -E
159 @ 68 ! 45 !
6 | 00 E 42 E
600 E 80 E a1 E
1200 : 90 E 40 E
2400 ! 4@ E 20 E
2060 : 40 i ag]
4800 E 2 i P
9665--E 1 i a8 i
o200 es i a8t
- + —tm—— e +
Fig 11.1

- 210 -

SERIAL INTERFACE

NOTE:

. It is impossible to read the current UART
status directly. ROM #8

always saves the new status in RAM when it is changed.
Refer to Chapter '

12‘30

- 211 -

SERIAL INTERFACE

12.1.1.5 UART DATA I/0 Port

$ 1/0 Port and Data Pattern T

msb lsb
s e S S A

107:106:05:D4:D03:02:D1:108: IN/OUT “XCB
to—tm—t ot bm—t——t——+

Note:

If the data length is less than 8 bits, Cutput
data must be right justified. Input data is right justified
by UART.

- 212 -

E

SERIAL INTERFACE

12.2 SOFTWARE DESCRIPTION.,

12.2.1 How To Initialize Serial Port

The basic sequence to initialize Serial Port is as
follous.

1. Select Channel
2. Set Baud Rate.

3. Set transfer mode.

Following Sample program shows the Initialization sequence
more detailed.

The sample program listed blow explains how to
initialize serial port. This sample program Initialize
RS=-232C Channel as 9600bps, even party,? bit data Jlength,l
stop bit and no control for Xon/Xoff,SI/S0. And it Updates
work area for ROM#8 can be use the same mode. You may skip
that portion if you want. They is no problem even if you skip
the updating the data,because ROM#@ always initialize RS-232C
Port when entering to Term mode or "OPEN °"COM:’'® .of Basic
command is issued by the Mode string.

- 213 -

SERIAL INTERFACE

-r . ,..—’
12.2.1.1 Sample Program ... How To Initialize SERIAC Port

3

- - . - | [

; Sample Program Initialize Serial Port.

$ Data in system area which you must update.

SERMOD EQU “XFa48é s 6 bytes for MODE string.
: ' “XF48é ; Baud rate Specifier.
: “XF497 : Parity Mode.
H “XF4es 3 Word Length.
; “XF499% ;3 Stop bits.
: “XF49A 3 XON/XOFF contorl.
: “XFa4eB ; . SI/S0 control.
INHDSP
INHIBIT)
COMACT EQU © “XFE43 { current user ID for
’ } serial port.
H “BO9 = Not used.
H “Bo1 = SI02
H “B16 = SIO1
H “Bi11 = RS-232C
SYSSTAT EQU “XFE44 s SCP port status.
BAUDRT EQU “XFE4A ;s Baud Rate Table entry
address.
INHBIT EQU “XFEA41 3 9 inhibitas XON/XOFF control.

$ I/0 Port Address.,

' SCP EQU “X98 ;s System Ccntrol Port.
PORTB EQU ~XBA ; RTS/DTR set port.
TIMEL EQU “XBC ;3 Timer Set Low.
TIMEH EQU “XBD s /7 // High.
RTSOTR EQU “X3F ;s RST/DTR data for RS-232C.
; Use “XFF for SIO1/2.
INITSERI:
; ENTRY: CCJI = USER ID. _
H LBl = Baud rate specifier. ASCII Number (1 to %)
H

Same Number of °"STAT' of TELCOM.

-— See if Serial Port is available.

LDA COMACT ' i Get current user ID.

- 214 -

SERIAL INTERFACE

ORA
JZ
CMP
JZ
- STC
, RET

SELECT:

; == Reserve Serial Port

DI
MOV
STA

RRC
RRC
MOV
LDA
ANI
ORA

ouT
STA

s~- Set BAUD RATE

SETBAUD:
" MOV

. STA
S8l
RLC

LXI
MoV
MVI
DAD
SHLD

MOV

A .
SELECT
C
SELECT

A,C
COMACT

C,A
SYSSTAT
8890111111

SCpP
SYSSTAT

A,B
SERMODE
.1.

H, TIMTBL
c,8B

B,0

B

BAUDRT

A,M

- 215 -

WO WO We Ve we PO we Ve we

wo WO we WO we WO we

we WO we WO we WO we

we

We W W WO we Ve we Ve o

)
No one use Serial [/07?
then branch.

SAME USER?

Then branch.

Set Error FLG.
Return to caller.

Inhibit all disturbance.
GET USER 1ID.

Set User ID. Be sure reset
Use ID to @9 after all task
finished,else the serial
port

can not be shared to
another user.

Move Bit8-1 to Bit 6-7

Save it. .

Get current SCP status.
cancel channel control.
Set new channel control
bits.

Select channel.

Update SCP status. .

Get BAUD RATE ID.

Update Baud rate Specifier.
Convert to Binary Number.
%2,Because table entry is
2 bytes.

CC] = Offset

Save entry point for
Music routine.

Music routine in RCM #0
destroy temporary changes
the timer count and
reinitializes it with
this entry data after
finish.

Refer Chapter 12.3

GCet Lower value.

SERIAL INTERFACE

H -

ouT TIMEL H
INX H :
MOV A,M ;1 Get Higher Value.
ouT TIMEH
& - MVI A, “XC3 + 3 Jo start timer.
ouT - °XBS ; Use this value to
’

atart Timer.

1

; SET TRANSFER MOOE.

MODE s
IN PORTB H
ANI RTSDTR s IF 232C RTSDTR="X3F to
{ activate RtS/DTR,
; else “XFF to unactivate.
ouT PORTB
IN “Xcs ;s Dummy read to clear
;{ Receive Buffer Register.
MVI A, "BBBG0G11109 ;{ 7bit,Even Parity,l stop bit.
ouT QD8H $ Set Mode.
; -- Update SERMODE
LHLI SERMODE+1 : Set PTR
MVI M,E’ ;s Set Parity check mode.
INX ° H
| MVI M,*7" $ Set Word length.
| INX H
MVI M, 1° s Set Stop bit length.
INX H
MVI M, 'N°® : Set XON/OFF control mode.
INX H
MVI M, N ;s Set SI/SO control Mode.
XRA A : Set CF=0
é{A INHIBIT s Disable XON/XOFF control.
RET
TIMTBL: DB ~X90, °X48 H 75 bes
DB “XéB, “X45 H 150
o8B X809, "X42 H 300
8):] “X00, " X41 H 6080
0B “X80, "X48 s 1200
DB “X49, X408 ;s 2409
0B “X20, X498 s 48400
DB “X19,°X40 s 9609
n]=} “X08, "X48 s 192060

- 216 -~

| SERIAL INTERFACE

12.2.2 SEND A Data To The Serial Port

4 - The sample program shown blow describes how to send
‘ data to the serial port. It performs no XON/NOFF and no SI/SO

control.

SEND A data to the serial port

ENTRY: LCJ = DATA TO BE SEND

WRITE: 4
IN “X08 ; Get UART status.
CPI ~B0001089) ; See if transmitter buffer
r— : register Empty?
JZ WRITE s Wait TBR become empty.
MoV A,C ;3 Get character to send.
gg$ “xcs ; Send it to the serial port.

- 217 -

SERIAL INTERFACE

o]

12.2.3 Read A Data fFrom Serf;l #Srt.

44 . . Sample program shown blowiexplains how to read data
from serial port by RST6.5. This sample only read data form
serial port with RST6.5,n0o XON/XOFF and no SI/SO0 control is

performed.

;%% Read a data from Serial Port.

1Read a data By RST&.S

Entry point of RST4.S5

ORG “X3C H
RSTéS: DI
JMP READ
ORG ??7?
READ: o :
PUSH H ; Save registers. :
PUSH 0 :
PUSH B
PUSH PSW
IN “Xcs $ Read the data
MOV L,A ; Save it.
IN “XD8 . ; Get error status.
ANI “BoGGG111@ : Strip error bit.
MOV H,A :
SHLD BUFFER
POP PSW ;s Restore Registers.
POP B
POP D
POP H
EI
RET
BUFFER DS 1 : Got Data.
DS 1 3 Error status.

- 218 -

SERIAL INTERFACE

12.3 AVAILABLE SYSTEM AREA. ~ ™t

" - : You may want to use thé syétem area for your use. In
this section, the available work area of ROM #8 is described.
Make sure to keep the compatszllty with System ROM, if you
want use this area.

Serial inbut Buffer from “XFE4AC +to ~“XFFC3, 1is reserved by
System ROM as SERIAL Input Buffer. And You can use it for
your own routine. .

SERMGCD séves thei; RS-232§ mode string
This area has & bytes data which indicates the RS-232C

String Mode, specified by °STAT" command in TELCOM or OPEN
"COM:" command in BASIC. The contents are following.

SERMOD at “XF486 DSé RS232C String mode Buffer

“XFa0é 3 Baud rate specifier (1 to 9)
“XF407 s PArity Mode (N/E/C/I)

“XFags8 ; Word length specifier (S to 8)
“XFa489 3 Stop bit (1/2) A
“XFaea : Xon off control (X/N)

“XF488 H

SI/S0 control (S/N)

INHIBIT (at “XFE42)

This byte is the XON/XOFF Inhibit Flag. 8 inhibit
XON/XOFF control,else enabled. .

COMMACT (“XFE43 Byte)

This byte indicate who is using serial port as blow.

Please reset to 6 after using the serial port,
otherwise the serial port is not available for another
user. ‘

“X88 = No user

“X81 = SI02

*X82 = SIOo1

“X83 = RS-232C

- 219 -

SERIAL. INTERFACE

CMPNT (at “XFE48) DS1 ;3 Character count in Buffer.

This byte has the character count in Serial
Buffer.

REDADDR (“XFE46 Byte)

This byte indicate last read character displacement.

WTADR (“XFEA47 Byte)

This byte indicate last written character
displacement.

BAUDRT (“XFE4A)

This points the table of the Baud rate. Refer to the
Chapter 12.2.1.1 Sample Program. '

- 220 -

CHAPTER 13
BARCODE READER

This chapter explains Electric specification and Basic
theory of Operation of the Barcode Reader.

The Barcode Reader program included in the PC-82¢1A
Personal Application Kit assumes that operation is done uwith
the HEDS-3871(produced by HP Corp.).

13.1 ELECTRIC SPECIFICATION

Refer to the °"PC=8281A USER’S GUIDE®' about the shape
and Pin Connectron of the BAR Ceode interface and electric

specification.

You may connect any Bar Cocde Pen to this interface.
But NEC recommends the products of YHP(YOKOKAWA HP) or (MECANO
Kogyo) and it is better that the Pen has the Power switch, for
saving the electric power of the PC~8261A.

The data line of Barcocde Reader is connected to the
Pin=-2 of BCR. And <this pin is connected to the RSTS.S of
CUP(88C8S) and Port C-3 of 81CS5S as shown blow.

! . .sncss .
) in‘g ¢ *% Z $2 =Ty
B
P“)
;: GND x TiC5s]
eus & . =
i . | mtC &1 a2 .
Vee Qi__ Pe 2 L° " F'_lg (3.1
S ———" .

- 221 -

-—— v s e

BARCOOE READER

‘High respectively.

While the Barcode Reader “is pouered on, PIN-2 is kept
as low level, and RSTS.5 is High.

BLACK BAR is represented by logical Low, SPACE BAR by
P |

13.2 THEORY OF OPERATION

This section describes the basic sequence of the
reading data from Barcode Reader.

1. If power on. RSTS.S is activated. At the first point of
the RSTS.S routine which is interrupted by RSTS.S disable

all interrupt.

2. Pole the Bar Code DATA port. And calculate the duration
of same status and save the status and Durationg

3. If Lou level continues too long assuime that Pouer off and
enable

4., QDecode the got Data and transfer the data to the upper
routine.

- 222 -

CHAPTER 14
PARALLEL INTERFACE

This chapter describes how to control the
Printer Interface of the PC-82861A. It is the
Centronics compatible a 8~-bit parallel interface.

14.1 HARDWARE SPECIFICATION
14.1.1 Physical Interface Of PC-8281A
PC-8281A has the Centronics‘ compatible

parallel interface. It uses 26-pin connector.
Refer to the PC-8281A USER’S GUIDE about the Pin

connection and signal name.

14,1.2 1/0 Port For PRINTER Interface.

14.1.2.1 Port A -—-- DOata Out Put Port For Printer.

I1sb 7 6 S 4 3 2 1 8 1sb

- . -t - dm -t -

P07 1PD4 1 PDSIPD4PD3iPD2IPD1IPDB: OUT “XB?

- 223 -

PARALLEL INTERFACE

PD7 to PDB —— DATA output to Printer.

NOTE: This port is used by another user.
— A -

14.1.2.2 Port C =--- BUSY,SLCT Signal Read

msb 7 6 S5 4 3 2 1 8 1sb

B e E s e S o

PXXAXXIXXIXX XX IBUSYISLCT! XX | IN “XBB

1
ot b m b - + + +

BUSY ——— B8 Printer READY
1 Printer BUSY

SLCT -——- 0@ deselect
1 Select

14.1.2.3 SPC(System Control Port) ——— STROBE Output
Port

msb 7 6 S 4 3 2 1 8 1sb
bbb e pm e
IXXIXXIPSTBIXX XX I XX I XX XX OUT X990
i PR R S S QU

PSTB --— 8 Strobe OFF
1 Strobe ON

~ 224 -

PARALLEL INTERFACE

14.1.3 Basic Theory Of Writing A Data To Centronics

— 4
The basic sequence <to write data to the

Centronics printer is as follows.

1,
2.
3.

4.
5.

If Printer is busy, wait a while. Otherwise go
ahead. .

Output a byte to the data lines and hold it.
Change the strobe level to low.
Wait a adequate duration holding the DATA.

All has been done, then finish else repeat from
(1).

The timing chart illustrates the sequence.

Parallel __XXXXXXXXXXXXXX

DATA ITLIC- S3TTFTIcS
_______ + +
DATA N
STROBE p—me +
BUSY 5 v
+ pm————

T1,T2 >= 1.8 uSec
1.8 uSec < T3 < 60BQuSec

Fig 14.1

Refer to the Manual of Printer about the

actual Duration of Tl to T3.

- 225 -

PARALLEL INTERFACE

14.2 SOFTWARE SPECIFICATION
- 314.2.1 How To Urite A Byte To The Printer.

) Tiny program shown blouw explains how to send a
character to the Parallel port. That sample Program does
same function as Basic command,

LPRINT °"ABCDEFGHIJ®

we we Ve

680080
$—— Equater -—-—
SCP EQU “X%0 3 System Control Port.
PORTA EQU “XB9 : Printer Data Port.
PORTC EQU “XBB $ Printer Status Port.
SYSSTAT EQU “XFE44 ;3 SPC status.
START:
LXI H,BUF s+ Set PTR.
MVI C,16+2 ;s Set data length.
PRINT:
IN PORTC ;1 Get Printer status.
ANI é s Strip BUSY,SLCT bits.
XR1 2 ;3 See if ready.
JNZ PRINT 3 1f not,then wait.
DI $ Inhibit disturb for Port A
s of 81CSS.
MOV A,M 3 Get character to Print.
ouT PORTA . s Put data on the DATA line.
LDA SYSSTAT ;s Get SCP status.
MOV B,A ;s Save It.
- ORI "B00100000Q ;s Set STROBE.
ouT SCP H
ouT SCP
MOV - B, X@3 s Please set appropriate

; value for your Printer.

- 226 -

PARALLEL INTERFACE

WalIT:

BUF :

OCR
JNZ
EI

INX -

DCR
JINZ
RET

0B

END

B
WAIT

H
C
PRINT

“ABCDEFGHIJ’

13,18

- 227 -

4
Point to Next

CHAPTER 15
HARDWARE

sr to another technical manual about the detail
specion of PC~-8281A°s hardware. That manual has already
been py NECHE, Chicago. Please contact with them. In
this ¢, only most important data is listed up.

- 228 -~

HARDWARE

1S.1 SYSTEM SLOT

15.1.1 Assignment Of Signal

N e e - e . . - e e 4 ...‘ #J -.=;) =
ST L T TN g W e wie e
-+ .System Slot
1) SYSTEM sLoT i
3 S
] ~ HHHBO9BAIHALH
— gg:gggggssgagﬁeuﬂwé‘:ﬂua.‘l\ [
1= =mm|
7 A
'Y n
i i :
Pin number | Sigrnal name l' Remarks
1 vOoD +SV
2 voOD +5V
3 ADQ l Adcress/Data 0
4 AD4 Addrass/Cata 4
.5 _ AD1 Address/Data 1
6 ADS Address/Data 5
7 AD2 . Addrass/Cata 2
8 ADS Addcress/Data 6
g AD3 Address/Data 3
10 AD7 Address/Data 7
11 NC No Canneczion : B
12 NC | No Cznnection
13 A8 Adcress 8
14 Al12 Adcrass 12
Fig 1S.1
- 229 -

HARDWARE

Pr; ;t;mber Signal name Remarks
15 Ag Adgrass ¢
16 A13 Addrass 13
17 Al10 Address 10
18 Al4 Address 14
19 All Address 11
20 AiS Acdress 15
21 A16 No Conneaction
22 A18 Ne Connection
3 A17 No Ccnn;czion
24 A8 Mg Connegtion
5 NC Ne Csnnection
25 | NC No Connection
7 RD R ead.
28 WR Write
29 10/ 10 OR Memory
30 ALE Address Latch €nzble
31 HOLD . HOLD
32 HCLDA HOLD Acknowledge
Fig 15.2

- 236

HARDWARE

— - P |
Pin numbar Signal name Remarks
33 INTR INTERRUPT
34 INTA INTER Ackncwiecsa
35 RESET RESET
36 READY READY
37 ROME RCAM .E:'.able
38 E Enatle
39 BANK#3 RAM Cassette Select signal
40 NC No Connection
a1 HADRD High Address Disable
42 LADRO Low Address Disable
43 | CLK Clock |
44 POWER RAM Protect signal
45 GND Ground
46 GND Ground
47 NC No Connection
48 NC No Cannecticn
Fig 15.3

- 231 -

HARDWARE

15.1.2 Explanation Of Pin

t 15.1.2.1 Function Of Signal :

Vdd (Out)

If you don’t use the BCD, this Pin can supply with
the current of 58mA or so.

ADB-AD7 (In/Out)

Lower 8 bits of the memory address (or I[/0 address)
appear on the bus during the first clock cycle of a
machine cycle. It then becomes the data bus during the
other cycles. ‘

A8-A15 (QOut)
The most significant 8 bits of the memory address or
the /0 address. The output goes off during Hold mode,it

then becomes "H®' level, because it is connected to a pull
up resister (180k Ohm). inside.

/R0 (Qut/3-state)

The read control'signél. 3-state during Hold mode.

- /WR (Qut/3-state)

The write control signal, 3-state during Hold
mode.,

I0O/M (Qut/3-state)

When this signal is 'H' level and L level,

- 232 -

HARDWARE

1@.

11.

12.

respectively, the CPU have access to the I/0 and the
memory. 3-state during Hold mode. :

. 4 i
ALE (Out/3-state)

It is wused to strobe the address information
(ADB-AD?). 3-atate during Hold mode.

HOLD (In)

The CPU, upon receiving the hold request, will
relinquish the use of the bus as soon as the completion of
the current bus transfer. UWhen the Hold is acknowledged,

the /RD, /WR, I0/M, ALE 1lines are 3-stated and the
AD8-AD1S lines are °‘H® level.

"HLDA (Cut)
It indicates that the CPU has received the HOLD

request and that it will relinquish the bus in the next
clock cycle.

INTR (In)
The general purpose interrupt. It is sampled only

during the next to the last clock cycle of an instruction
and during Hold and Halt states. .

/INTA (Out)

It is used instead of (and has the same timing as) /RD
during the instruction cycle after an INTR is accepted.

RESETO (QOut)

It indicates CPU is being'reset. Can be used as a
aystem reset. - .

- 233 -

HARDUARE

13. READY (In)

If it is 'L°, the CPU will wait an integral .number of

clock . cycles for it to go 'H' before completing the read
et - O Write cycle. - gy e Lo

-

14. /ROME (Out)

The enable signal for external ROM
general purpose.

is 8, it gces °"L°.

cartridge or
When the upper 4 bits of the I/0 address

40H 138
7 {OME
o/ ——&1i Yi CONTROL
AT —@ T2 BANK
Y3 —— T
A ——C Y4, §502D
‘Al =3 YS— 8302
Ai2 ——A Yé—K
Y7 Lec
Fig 15.4
15. E (Qut)

It is used as a memory enable signal of the read or
uréte cycle. E is the logical OR (active high) of /RD and
/WR. ‘ ,

=5 _
W?::::[:>*‘"'E

Fig 15.5

- 234 -

HARDWARE

16.

1v.

18.

19.

28.

/BANK 3 (Out)

The memory enable signal of external RAM cartridge.
(See next section)

- . - -4
HADRSD (IN)

 If it is "H',the memory of high address (°X88668 <to
“XFFFF) in PC is disabled. (See next section)

LADRSD (IN)

If it is "H',the memory of LOW address ("X8 to “X7FFF)
in PC is disabled. (See next section)

CLK (Qut)

2.5MHz clock output. It is the same phase as CPU
clock.

POWER (Out)

It is the signal /RESET (connected to the CPU) is
reversed. ‘

- 235 -

HARDWARE

15.1.3 DC Characteristics

E Symbol i Drive capacity (mA)f
{ ADO-AD? P 4.8 T §
{ A8-A15 C 4.4 :
{ /RO, /R, [0/M ! ;
| ALE,RESETO L 4.4 :
i HLDA,/INTA,CLK § 2,0]
{ E,/ROME,/BANK 3 | 1.1 5

Fig 1S.6

- 2346 -

HARDWARE

1S.1.4 AC Characteristics

: ‘waysAT oy
prusopaad qou 31 3jahka prom 114, 100 vy
—u.—ae
. Aoy
S
T
Il ~L
— - L "
ro, 3 1. . - T
1 et Wy
e & e e ol it
) ! L457 W
[{
.I.llnli% NEVive)//7) Ssx)aay
. Ll {
way |)
. 1) -+ 7 |
1 .
y “ sshidav
' .
?
Fnlﬂw.l."v_ » -.N N uhu“

Aavil

v

t~oqy

il 1

o

Fig 15.7

- 237 -

HARDWARE

4
« ‘
! '

1 1 .—..u:.«m e I T
posmjad Jou sy qodo pvm iy

TR LM

{ajon
A7
. ! Advay
] o d . L, Ay ;
ninll:.lnuw.ﬂ'. - . —maw!x J—ﬂ ~ M . : ﬁ °]
“ . I in
‘ v 1 4 ——avmn i....-; ﬁu .—.zv Ak e ...msnL
|
| 1 ! } _Illl TV
. ai» e s..-w —«i Sw u-” ... -—
t
. 100 viva ssafaey K L~ogy
. —fl.!ﬂdﬂ!.lv
1 " . .
g) ssagady (s
—A . czsvll.l.v A ku.ﬂ , uc..m. L .
g1 HE ey I Iy I e B
T T T B PR
T
L
H
b
i _ |

Fig 15.8

- 238 -

HARDWARE

& disregars Twar

min (nS) typ (nS) max (nS’
tere = 407
tlex 112
ta 112
Tl Ti
te | 142 |
tu | 4z |
taz 87 !
te i73 !
tap ' "5
teog 83
to 334

tez ; 52§

Tes. i 162 .

taou L 0

twoe %

13

two | 88
Tow $Is
; Coow : f 242
Pt | | -z
Sarr | 5 3%
tar | ' 2
tes | M0 !
Trvp % 0 ! 5

Fig 15.9

= 239 -

4 ek aTe R

HARDWARE

15.2 MEMORY CONTROL CIRCUIT

RAM #n means the chip number the

In this section, on

main board.

_ s "S5
| The memory of PC-8281A consists of RAM 16K and ROM 32K
bytes,and can be expanded to 48K bytes on opticonal RAM socket
(RAM Chip #2—- #7) and to 32K bytes on user ROM socket (ROM #1)

in PC.

Show the composition of memory in Fig 15.11 RAM Chipe
(#9—- #7) and ROM (#Q- #1) is connected to the same DATA bus

and their outputs are controlled by /CE and /BANK signal.
There are five banks of BANK #G@(available RCM #@), BANK

#1l(user ROM #1), STDRAM(available RAM #@- #1 and opticnal RAM
#2-#3) ,BANK #2 (optional RAM #4- #7) and BANK #3 (RAM
cartridge). Show the bank control circuit in Fig 15.12 8y

of this, you can assign each back to the memory address

means
in 64K bytes area of CPU shouwn in Fig 15.13 and Fig 15.10.

Address STDRAM .. BANK=2
AXFFFR. .- k
. RAM #1 '] RaMe7 }t
AX E929 . ' {

DFFE , ' P

S RAM »9 : < : :
N Coga . ’ : e
AX BFFF r - :
‘| RaM 22 MES |
AX Aaga i e
AKX 9FFF X :
| RaM 23 24 |
X 000 : RA RaM24 .
NS option

RAM oaddrecs

- 248 -

HARDWARE

NEcaed . RaM ;| mam RAM |
BANKZ2 |

J
k.
®
=
3

ROM RGM oM
SANK=D BANY =T ! e

@ e

()

AR £222 L2 N S RAM . RAM
i) SToRaM | BANK=2 L BANESS
AR 2222 ! 5 . .

i j
N 1

oM
SANK2!

a
<

A5
SaNk#! |,

I

PR T I I B ettt

3
»
<
x
w

FEEEE R

()

& <
AXFFFF
A ‘ caﬂa P.-BéM ?A.M--.q

AX 8298

“The arez within dotted line
ie ogtiorai memnry.

Frec e rrnavenenrn

M 2399

.......................

. . » e
Variaty of memory camgasition

Fig 15.16

- 241 -

HARDWARE

-
P

Lygminu o o1} 1500007

\

1RANVE.

ordnvi
- £8 Ay

S IANYE

Hyunl.s

-

%J-M,

T

Setiiop

ey g ../M...\o..
IAJ -
e\l —>| P h.a.“._.“.-.
viva-
» H‘ o “ey
. g =
I &

-~
~ hiv~oy..
" pAWOY |
td~0g

n

i > = .
A NS 5|
iia] 3
} g) 1”4 £ ~
it v | L ey i e
vy -a—.u<s- -“ IME r 11]] h.vagk N\; el r Y9 _.Q“SS“ a4
beot]—dg :T_ns.__ yl—lD lag0g val—qa, 0 o0
! == \..i...m_ll ’ PEIAN P
senor Sciop JEtHOp

- ot

T

hy

gy

‘11

Fig 15

- 242 -

HARDWARE

Rpo—,
- d4
(VA
IAU‘—-
LACRSD ™ = I - e
3 R 4oy ng § _|
Ya — EANKZ3
Ao D 14 AT ENKA T
| o E— -
AS i ,29 A 3 Yi— o > AHKE
432 - 3 30, A Y STTaaA
l ' 72
AD3 . 42 44‘; 3 g
E q 1 Y._. - — Sk S2
1 H Ex
i i —_—

=z — >: !
074 ___.J ——} H 40.'-.'.‘3?

DO e

i:&.

A2

Bank Contrel Circuit

Fig 15.12

Variaty of memory camposition

%&@@@@@@@@
LABR! ojolojo|1]!
L2 lofololrlritjaolt
AR O 1oty 6go
FARR2 [0 tO |1 10101100

Fig 15.13

- 243 -

)

HARDUWARE

The way of bank conversion by softuware control
illustrates in next section. When PC is reset, it becomes any
mode (before reset)of the composition No.1-3. But in the case
of nothing of optional RAM BANK #2- #3, it can become only

3 No.l1l mode. If opticnal ROM is-installed, another composition
No.4-6 are possible. Further, as it becomes the mode of é4K
bytes full RAM by optional RAM BANK #2- #3, you can use a
CP/M, etc.

- 244 -

HARDWARE

15.3

[/0 ADDRESS

(Address is expressed in Binary.) i

I1/0 address! In/0ut!

I1/0 device:0Operation

@e8oeeee i :
- H H user
\v ' H
g1e11111 | '
61160066 | H
Vo ' v NEC reserve
V- ! H
61111111 H
1680XXXX | O | NEC reserve (ROM cartridge
' i or general purpose) A decoded
: i signal appears on /ROME pin.
1881XXXX | O | D-FF ! System Control
4 H i %Cassette Motor Control
: ' i ¥Clock Command Strobe
H : ! *Printer Strobe
4 ' i %*¥Serial I/F Select
1818XXXX | O | D-FF | Bank Control
1818XXXX + I + 3-8 |
: i =Buff! Bank Status
] : i *Bank Status
: H 1 %Serial I/F Select
: : ' Status
1611X@66e 1I1/0: PPI v
_ ' 81C3S! Command/Status Resister
1011X801 ! O Port A Output

- - e ma m— wE w- e =

*¥LCO Chip Select
%*Printer Data
*Keyboard Scan Data
*¥Clock Command/Data

- 245 ~

HARDWARE

- 246 -

! 1811X8186 | 0 | i Port B Output {
H H ! i %*LCD Chip Select H
' : ' i %Buzzer Control '
4 : : i %RS-=232C Control '
H H ' i *Auto Power Off '
H ' ! H Control :
! 1611x611 1 I | i Port C Input '
H H : i %Clock Data H
: H ' i\ *Printer Status '
H : H t %BCR Data : '
H H H i %RS-232C Status H
! 1611X168 | O ! i Timer Resister '
H : 4 : (lower 8 bits) :
: : : 1 %¥Lower 8 bits of counter!
i 16811x161 1 O | i Timer Resister H
HE H H : (upper 8 bits) H
H H H | ¥Upper 6 bits of counter!
: H H i ¥Mode Select H
! 1108XXXX !I/0! UART ! ' E
' ' i 6462 Data Write/Data Read :
v 1181XXXX + O | i Control ;
! 1181XXXX I ! 3-S- | E
H ' i Buff! Input Port '
' H ' i *UART Status :
H H H i *Low Power Signal :
Vo111eXXXX I+ 3-S- | ;
' ! i Buff! Keybocard Input '
v 1111XXX8 | 0 ' LCDC | Command Write/Status '
s : H ' Read H
P 1111XXX1 ¢+ O ! i Data Write/Data Read :
Fig 15.14

HARDWARE
15.3.1 Detail Information About 1/0
This following is the particulars of each Function;

The I/0 address is shown in the number which is used really in
-4 system. s -4 o

15.3.1.1 Reserve Area

As this area is reserved for NEC,don 't use it.

15.3.1.2 System Control

11 601068 08 0! OUT “X90 . %

g é S 4 3
- 1SELAISELBIPSTBITSTB:REMOTE!
REMOTE CASSETTE MOTOR CONTROL

%) motor OFff
1 motor On

TSTB CLOCK COMMAND STROBE

" - Strobe Off
1 Strobe On
PSTB PRINTER STROBE
@ Strobe Off
1 Strobe On
SEL A SEL B SERIAL INTERFACE SELECT
@ 8 Not used
%] 1 SI02
1 @ SI01
1 1 RS-232C

- 247 -

HARDWARE

15.3.1.3 Bank Control

- 1181880886 1! O0OUT *A1L *t -

3 2 1 e
: {HARD2 ! HARD1 ! LADR2 ! LADR1 !

LADR 2 LADR 1 SELCT ADDRESS “X8 To “X7FFF

%] %] Bank #@ (ROM #8)

%] 1 Bank #1 (ROM #1)

1 e Bank #2 (RAM #4 - #7)

1 1 Bank #3 (RAM cartridge)

HADR 2 HADR 1 SELECT ADDRESS

’ ("X8680 TO “XFFFF)
Standard RAM (RAM #0 - #3)
Not Used

Bank #2 (RAM #4 - #7)

Bank #3 (RAM Cartridge)

PR OO
RO O®

e DA -

HARDWARE

15.3.1.4 Bank Status

-8 '1 810060808 IN “xag

BIT 1 BIT @ STATUS OF ADDRESS
("X8 TO “X7FFF)

%) %) Bank #9 (ROM #@)

%) 1 Bank #1 (ROM #1)

1 %) Bank #2 (RAM #4 - #7)
1 1 Bank #3 (RAM cartridge)

BIT 3 BIT 2 STATUS OF ADDRESS
(°X808@ TO “XFFFF)

%)) Standard RAM (RAM #8 - #3)
%) 1 Net Used

1 %) Bank #2 (RAM #4 - #7)

1 1 Bank #3 (RAM cartridge)

BIT 7 BIT 6 STATUS OF SERIAL INTERFACE

%] %] Not used
%) 1 SIN2

1 %) SIO1

1 1 RS-232C

- 249 -

HAROWARE

15.3.1.5 PIO 81CSS Address

%Command / Status Resister
) P | -

1101110 0 0! IN/OUT “XB8

%#Port A output

110111006 1! OUT “XB?

7 6 S5 4 3 2 1 9

1PA7 IPASIPAS IPA4 I PA3IPAZ I PAL IPAG,

+PO7:1P0&IPOSIPD4:PD3:1PD2:PO1IPDL!

IKS71KS61KSS{KS4!KS3!KS2!KS1 !KSB !

'CCK:iCD@!C2 iC1 iC@ !

PA7 to PAG LCD Chip Select
PD? to PDO Printer Data Port
KS? to KS@ - Keyboard
C2 to CB Clock command Output.Port'
CDo Clock Data Output Port
ccK Calendar Shift Clock

8 ' Clock Off

1 Clock On

*Port B Output

181116106 OUT “XBA

-25¢ - .

HARDWARE

7 6 S 4 3 2 1 e

e ' 10CD/ | == ' '
IRTSIDTRIBELLIAPOIRD iMCiPB1.PBG:
4 = g v, " '
H - 1KS8!
PB1 -- PBG LCD Chip Select
MC MEMORY CONTROL OUTPUT
%) . On
1 Off
DCO/RD DCD/RD SELECT GOF THE RS-232C
] Ring Detect
1 Data Carrier Detect
APO AUTO POWER OFF OQUTPUT
] Output OFF .
1 Output On
BELL BUZZER OUTPUT
7}) Ring
1 - Not Ring
OTR RS-232C DTR output Active Low
RTS RTS output Active Low

- 231 -

HARDWARE

*Port C

COI
SLCT

BCR

CTS

DSR

Input

11911101 1.;

S 4 3 2 1 e

SDSR:CTS{BCR:BUSYESLCT;CDI2

Clock Bata Input Port

PRINTER BUSY

Printer Ready

Printer Busy

Bar Code Reader Data Input Port
CTS Input Active Low

RS-232C DSR Imput Active Low

- 252 -

HARDWARE

%¥81CS5 Timer Resister

'1 911110 8! OUT/IN “XBC
A . . =

7 6 S 4 3 2 1 0

ITL7ITLSITLSITLAITLI!I TL2!TL1!ITLG!

TL? == TLB8 Timer Counter Lower 8 bit

11811118 1) OUT/IN “XBD

7 6 35 4 3 2 1 @

tM2iM1ITHS I THA ! TH3 I TH21 TH1 ! THeG !

THS == THE Timer Counter Upper 6 bit

M2 M1

%) %) This mode transmits a single-—
square wave which the first
half of the number of count
is high and remaining is low.
(Mode 8)

%) 1 This mode continually transmits
‘ a Mode @ type square wave.
(Mode 1)

1 %) This mode transmits a L-pulse
(single pulse) during one
clock when finishing the
terminal count. '

(Mode 2)

1 1 This mode continually transmits

a Mode 2 type pulse.
(Mode 3)

- 233 -

HARDWARE

15.3.1.6 UART Data 1/0 Port

1110810 06 8 INOUT aXCS

UART DATA PORT

15.3.1.7 UART Control Port

%Command UWrite

1161186 06 6! OUT "X08

1CLS2!CLS1IPI IEPEISBS!

SBS

EPE

STOP BIT SELECT

Stop bit length is 1 bit
Stop bit length is 1 bit.
If data length is S bits,

stop bit length is 1.5 bits.
In the other case, it is 2 bit.

EVEN PARITY ENABLE
0dd Parity

Even Parity

PARITY INHIBIT
Cenerate parity and check

Inhibit generating parity

- 254 -

HARDWARE

and check

ClLs 2 CLs 1 CALENDAR LEPGTH SELECT

0 0 Data Length S5 bits
0 1 Data length 6 bits
1 Q Data length 7 bits
1 1 Data length 8 bits

- 235 -

HARDWARE

DCO/RO

0

1

CE

FE

PE

TBRE

LPS

%*Status read

'1 181100 08! IN “XD8

- s

7 4 3 2 1 @
LPS! 1 TBREIPEIFEIQE} =— /-=i|
g i i i+ + DCps RDY

Data Carrier Detect/Ring Detect
On
Off

Overrun Error

Detected

Framing Error

Detected

Parity Error

Detected

Transmitter Buffer register Empty

ready to receive data to transmit

LOW POWER SIGNAL

low power voltage

- 256 -

HARDBWARE

15.3.1.8 Keyboard Input

= 1111610688 IN-=xes?’

15.3.1.9 LCDC Address

% Command Write /Status Read

111111118 IN/QUT “XFE

* Data Write/Read

11111111 INGUT “XFF

- 257 -

