NEC PC-8300

Technical Reference
Manual

F38@-F381

F382~-F383
F384-F385
F386-F388
F389-F388
+38C~F38E
F38F-F391
F392-F394
F395-F3B8

F3B9-F3BE

F3BF
F3te-r3c1

F3C2-F3C3

F3C4-F3CS
F3C6-F3C7
F3C8-F3CA
F3CB-F3CD
F3CE=FIDO
F301=F3D3
F3D4=-F3D6
F3D7-F3D9
F3DA

F308

Highest memory location

PC-8300A SYSTEM WORK AREA® - .. TN

Flag for 1st rcset or net e
4D8A Not 1st power cﬂ -

ID area for the powerudOWﬂ’whenxﬁﬁwggf@§iﬁ;gAb

Poueh on Mook

Barcode resder hook

UART hook

Interyg; timer Mook

LOW BATTERY intefrupt vector

2nd ROM check routine

t
2nd ROM EXECUTE routine

2nd ROM flag

TELCOM function key Aatavtop address

TERM function key data end+1 address
Pointer for statement process address taple
Pointer for function process address table
Value check routine hook

1 éharacter input from CASSETTE hook

1 character“butput to C&$SEL

R

CASSETTE urzte-on hoox
CASSETTE regd onﬂhock«:

Statement hook
e e,

Insert mode flag

The bank number when Rower o

28: Bank 1 N

28: Bank 2

@C: Bank 3

E

F3DC
F30§—F3DF
F3EQ-F3EL
F3E2-F3E3

F3E4

F3ES
F3E6
F3E7
F3ES8
F3E9
F3EA

F3EB

F3FQ
F3F1
F3F2
F3F3

F3Fdé

F3F5

F3F6-F3F9

Cursor pattern in insert mode

Error routine hook

Function key data pointer

PAST key data pointer

Console flag

Q0:
XX

LCD
CRT

Cursor position v

Cursor position X

Max

Max

line number on LCD

character length on LCD

Function key display flag

Screen lock flag (No,ééroll)

Cursor Flag

20:
XX

ore

on

Cursor position Y on LCD

Cursor position X on LCD

Cursor position Y on CRT

Cursor position X on CRT

Max

Max

line number on CRT

character length on CRT

Escape seguence counter

Arems for F3F2

Reverse mode flag

Q0:
XX 3

Max

The

Normal
Reverse

character length on printer

string for printer line number

-®

F3FA-F3FB

F3FC

F3FD
F3FE=F3FF
F4Q0

Fao1l

F4a@2
F4@3
F404
F4@S
F4Q6-F40B

F4QC-F4QE

F4QF-F4&12
F&a13-F41S
F4a16-F423
Fa24-F426
F4a27~-F446
Fa4a7-F44A
F44B-F44D
F44E~-F452
F4&53

F4S54

F455

Graphics cursor (Y,X)
Current mode

Bit 7: TEXT

Bit 6: TELCOM

Flag for EDIT mode
Error entry

Not used

Key wait flag

Q9: Not wait

xx: Wait

The timer for auto power off
TERM full, half flag
TERM Echo flag

Flag for CR,LF mode

RS-232C control string

When .CO file was executed, this entry will be
used for the start entry

Not used

Subroutine for OUT

High speed SUB routine

Work area random number

Data for random numbei

Last random nuinber

Subroutine for INP fuhétidh

Dummy end marker for direct statement
Error number save .area

Not used‘

The value in LPOS(@)

F4sS6

F&57
Fé58
F459-F45A
F458-F45C
F4SD-F4SE
F4ASF-F461
F462-F59F
F5A0
FSA1-F6A2
F6A3
.F6A4
F6AS-F744
F745
F746-F7ES
F7E6-F826
F827-F82E
F82F-F830

F831

F832-F83D

F83E-F83F
Fase

Fa41

F842~-F848

Output s3elect flag

Q@: Console

xx: Printer

The column position inside of print statement
DEL, B8S flag

Stack top address
Current line number
BASIC TEXT pointer .
Pointer for VAL fuhction
Buffer for pre-compile
Terminator for INPUT

Buffer for LINE INPUT

Stopper for LINE INPUT full

.Cursor position for CONSOLE (X) : ’ T

' Function key data area

Directory flag

Function key data area for BASIC
When RESET, the IPL file execution
Line terminate flag .

1st cursor position im SCREEN EDIT

Cursor flag
20: Normal

.. xx: Insert mode

Buffer for timer IC
Interval timer counter

Aute power off timer (x6 second = Power off)

Flag for time cut

Not used |

F84C-F84E The mode of COM interrupt and entry

FB84F-F86F ROM file directory

Fa87@-F37aA Non-registered file directory

F878-F885 PAST file directory

F836-F890 EDIT file directory

F891-F977 User file directory

Fo78 End of directory (FF)

FO79~-F97A Directory pointer

Fo78 Back up character for CASSETTE input
Fo7C Back up characteé for RS-232C input
F97E~-F38D Back up character for RAM file input
FI8E : “Sack up character for PAST file ﬂ
FS8F ~F99@ File number

F991-FS98 2nd ROM directory.

F999 ~ IPL flag

FosaA Cursor flag buffer for screen edit
Fo99B~-F3AS FASE~-FA99 buffer for EXEC

FoA?7 A register buffer for EXEC

FSA8-F3A9 HL register buffer for EXEE

FSAA-FSAB Start line address for LIST .o
FSAC~-F3AD Last line+l address for LIST

FSAE-FSAF Stack pointer save area for autc power off
FoBB-F9B1 RAM start address

F9B2 - TERM Down Load flag

F383 TERM Up Load flag

FoB4-FIBS Pointer for Down Load

FoB6
FoB7
Fogs
FoB9
FoBA
FoBB
F9BC
FOBD
FSBE
F9BF
FSC@-FSC1
F9C2-F9C3
F9ca§F9c5
FOCE6&-FIC9
FOCA~-F9CB
F9CC-FASF
FA6Q-FA87
FAB8-FA89
FA8A
FASB
FA8C
FA8D
FASE-FA8F
FASQ
FA91

FA92-FA99

B8efore character for TERM
RS-232C OQutput SI,S0O flag
RS-232C Input SI,SO flag

When console is not CRT, the value
Menu mode flag

Menu mode sub-command flag

Hook nNnumber save area

Cursor X position in TEXT

F3EB save area

F3E9 save area=

Start address for .CO file
Length of .CO file

Execute aqdrgssvof .CO file
Extension

Data number from LOAD start

Hook address table

LCD reverse attribute table

End of file in access file

Array flag for valuable

The type of floating accumulator

Flag for pre-compile

Flag for line number in pre-compile

Text pointer save area

Character length when TEXT read

Value type when TEXT read

Value when TEXT read

is not zero

FA9A-FASHE End of string space

FASC-FASD Stack pointer for string
FASE-FABB Stack area for string
FABC~-FABE . Descriptor for string
FABF-FAC@ Max addresé of free afea of string space
FAC1-FAC4 Work area for string process
FACS-FAC6 TEXT pointer save area for FOR
FAC7-FACS8 ERROR LINE NUMBER when DATA
FAC9Y Valuable‘type in next
FACA READ, INPUT flag
FACB-FACC Buffer for pre-compile code

|

FACD Line mumber, Line address flag
' @2: Line number :
xx: Line address

FACE~FACF " TEXT address before statement

FAD@-FAD1 STACK pointer for before statement
FAD2-FAD3 Line number in ERROR
FAD4~FADS Current line number

FAD6-FAD? TEXT address in ERROR’
FADR-FADS ON ERROR GOTO Jjump address
FADA Flag for error trap

FADB-FADC Work area for calculation
FADD~FADE Line number when STOP and END
FADF-FAE®@ TEXT address for CONT
FAE1-FAE2 ASCII file start address
FAE3-FAE4 CO file start address
FAES-FAES ‘Variable area top address

FAE7-FAES
FAE9-FAEA
FAEB-FAEC
FAED-FBO6
FBO7-FBOA
FBoB
FBOC-FBQOD
FBGE-FB;l
FB12-FB13
FB814
FB15-FB16
FBl?-FBlS
F8i9
FBlA.
FB18-FB22
FB23

FB24 -FB28
FB2C

FB82D0
FB2E-FB35
FB36-FB4D
FB4E~-FB50
FB8S51-FBS8
FB59-FBSD
FBSE-FB6O

FBél -

Array area top address

Free area top address

DATA pointer when READ

Variable

Work for

Not used

Work for

Not used

Work for

Not used

,uork for

Not used

“Work for

Work for

table

garbage collection
garbage collection
garbage collection

garbage collection

VAL fuﬁction

output

Save area for FAC

Not used

FAC

Flag for

Not used

Argument

FAC

for double calculation

Buffer for number string conversion

Not used

Work for

Not used

Work for

double calculation (DIV)

single calculation (MUL)

MAX drive number

FB6&2
FE63-FB64
FB65-FB66
FB&7-FB68
FB69
FB&A-FB6B
FB6C-FB&D
FRSE-FB6F
FB70-FB71
FB72
FB73-FB77
FB78-FB8O
FB81-FB8Y
FB8A
FBa8
FB&C
FB8D
FB8E
FB&F-FB9Q
FB91
FB92
FBS3
FB94
FBOS
FB96-FBBF

FBCO-FCFF

MAX files number

Top address of file pointer

Top address of drive data

File buffer address of number zero

Current Drive number
Current drive data address

Current FCB eddressv

Directory pointer for directory search

Directory position in search
Auto run flag after LOAD
Work for disk

File namé area

Old file name in NaME

Track number in DSK1S, DSK@$
Sector mumber in DSK1$,DSK@S$
Flag for program access

Fiag for program SAVE

Disk BUSY flag

Disk error counter

Read after write flag

EBCDIC conversion flag
EBCDIC conversion buffer
Condition of DISK adapter
Condition of disk

.Stack for initialization

Screen buffer for before page

FDOO-FE3F
FE4D
FE4L
FE42
FE43
FE44
FE4S
FE46
FE4Y
FE48
FE49
FE4A-FE4B
FE4C
FE4D
FE4E
FE4F-FESF
FE6Q
FE61
FE&2
FE63-FE67
FE68
FE69-FEAS
FEAS
FEAA
FEAB-FEBQ

FEB1-FEBG

Screen buffer

Flag for XON, XOFF

Not used

Flag for X parameter

Flag for USART

9@H out copy

Chafacter counter for RS-232C buffer
Character get position for RS-232C buffer
Character put po;nter for RS$S-232C buffer
Character position when error was detected
Flag for XON, XOFF sequence

Baud rate table

RS-232C receive data mask pattern

Key scan intervai timer

Work for key scan

Flag for key input

Shift mode flag for input

Work for encode of key code

Repeat counter for key input

Work for key input

Data counter for key input

Buffer for key input

Input condition of break character
Status of function key display

Work for cursor display

Save area for character pattern

12

FEB7 : ‘ Status of cursor
Bit 7: Cursor display mode ON,OFF
Bit @: Cursor QON,OQFF

FEB8 Cursor blink timer

FEB9 Cursor position (Y)

FEBA Cursor position (X)

FEBB-FEBC Work for cursor blink

FEBD-FEBE Work for LCD display

FEBF-FECQ Data pointer for user define character
FEC1 Disk BASIC or not flag

FEC2 Disk SIO time out timer

FEC3 1Disk BASIC boot flag

FEC4-FFC1 _RS€232C receive buffer

11

CHAPTER 1 Notation and Floating Accumulatorcccceceeecocoses 2

1.1 Notation of Floating Point Numbersccieeecccecocccces 2

1.2 Floating Point Accumulators and Related Variables........... 4

CHAPTER 2 FLOATING POINT INPUT AND OUTPUT ... cccveecccrcscnccsccascs 6

2.1 InpPut. ...t ecacocccnccscnns ceccacaces Geecesesesesssccsssen 6

2.2 Qutput...... eceecceas cecescsesccce “ecsccccsscessesssasccnes e 7

CHAPTER 3 FLOATING POINT MOVEMENT....cccccev-- teeccecsessensacses 9

3.1 Single Precision Numbers.......cccecceeecee ceecesscessssscacnccee 9

3.1.1 Move number from memory [HL] 0 FAC. .. cccecesscecccceccccnncns 9

3.1.2 Move registers (B,C,D,E) to FAC.....cecececcccccccas cececeane 10
3.1.3 Move FAC to registers (B,C,D,E).cccccecceroccccncsccccccanans 11
3.1.4 Get number in registers (B,C,D,E) from memory [HL].......... 12
3.1.5 Move number from FAC to memory [HL]....ccecoeceeeccccanns eeessl3
3.1.6 Move number from [DE] to [HL]...ecceeevecesaasascnnoccccnssans 14
3.2 Any Type Number......... ceecsesesssesseccsesscscsbosssssencneas 15
3.2.2 Move any type value from memory [HL] to FAC....... eeasesceseslb
3.2.3 Move any type value from FAC to memory [HL]......ccctieeeeeen 17
CHAPTER 4 COMPARISON...cccceecenas eseescsesescscscece ececcans sees18
4.2 Single Precision.....cccceeeececccsccesssccsscccnses cecesons 19
4.3 Double PrecCiSion...cccecceescssscscccsccesoscsssssscsossascses 20
CHAPTER 5 CONVERSION...ece . ceceese eesiecsces ceecscescscsscccsssssses 21
5.1 - = Integer to Single...... e 21
5.2 Single to Integer.....cvcecececenes ceeeeseecececen ceeecccccns 22
5.3 Single to Double........ cecsccctesestetsnsse s s acesas ceecene 23
5.4 Double tO SiNgle...iiicuiceereecscssocccsocssoccscsccsccoccacsaes 24
CHAPTER 6 Basic Operation.....ccvceeceeeess cescscsesssssssssssasss 25
6.1 Integer Arithmetic.....cicceeiieecreccccscoccccccsccccoccases 25
6.1.1 Integer addition...ccceeeececcccccccncnancs cecccccccscssesea 25
6.1.2 Integer Subtraction.....cccccecccccces ceeectecscccccscacssecas 26
6.1.3 Integer Multiplication...cccceceeececcecrcsenccccnssasnas eesed7
6.1.4 Integer Division....ciceeeeeccreccoscecccccsoccscsccsscoscccscses 28
6.2 Single Precision ArithmeticC...cceieeeeeeerrccrccoccscacnocoas 29
6.2.1 Single Precision Addition........ ceevessvecseseseccecenae cesees3D
6.2.2 Single Precision Subtraction........ccccceeecccncas cescesane 31
6.2.3 Single Precision Multiplication.....cccceeeececececccccccecns 32
6.2.4 Single Precision Division.....cceeieeiitecenccececcccnccncnns 33
6.3 Double Precision Arithmetic......cccceceeeee. cececcocvsccecen 34
6.3.1 Double Precision Addition........cceceeeeccecccccscsosccscnnccs 35
6.3.2 Double Precision Subtraction............ cecesrcessccse P~] -
6.3.3 Double Precision Multiplication.......ccicececceccnas R —
6.3.4 Double Precision Division..... ceccescncae cececcccesscesaccs .38

HAPTER 7 Mathematical Functions.....c.cceeeceeee cececscccsccnse ceeenn -39
POWEY .. cceecacecncca cceesssscsssecscncacn ceasccesesesescsens 9
B P . ccceececcoccocsnscsssoncsncssscns cecene seccen cesestecccccs 40
LOG. . v ceeeecocasscsnssssnccscsscss ceececescocanssase eeseecscne 41

NNNNNNGNNNO0
L[] [] L[] L] L] [. L] L]

WodJond Wb
n
-
=
L]
L]
.
L]
*
.
L]
L]
.
L]
L
.
[]
[
L]
-
L]
L]
*
.
L]
L]
L]
[]
L]
[]
L]
L]
L]
L]
L]
:
L]
.
[]
.
L]
[
[

Accumulator,2,4,5,34 FAC,4,5,6,7,9,10,11,13,16,
Accumulators,d 17.18,19,21,22,23,24,25,
Added, 2,25,30,35 26,27,28,29,30,31,32,33,
Addition, 25,30,35 36,37,38,39,40,41,42,43,
ADDRESS,6,7,9,10,11,12,13, 44,45,46,47
14,15,16,17,18,19,20,21, FADD, 30
22,23,24,25,26,27,28,30, FBUFFR,5,7,8
31,32,33,35,36,37,38,39, FCOMP, 19
40,41,42,43,44,45,46,47 FDIV,33
Angle,b43,44,45,46 Field, 8
Arctangent, 46 FIN,6
Area,5,13,14,15,17 Floating,2,3,4,5,6,8,9,29,34
ARG,5,19,20,22,34,35,36,37,38 FMULT, 32
Argument,5,18,19, 20,22, 25, FOUT,5,7
26,27,28,30,31,32,33,34, FPWR, 39
35,36,37,38,39,40,41,42, FSUB, 31
43,44,46
Arithmetic, 25,29,34 Get,12,22
ATN, 46
IADD, 25
Base, 39,40,41 ICOMP,18
Basic, 25 IDIV,28
Bias, 2,29 IMULT, 27
Binary, 3 Integer,4,5,6,7,8,15,16,
Byte, 29 17,18,21,22,25,26,27,28,39
Bytes.,2 ISUB, 26
CALL, 22,39,41,42 LOG, 41
Can, 22 Logarithm's, 40,41
CONDS, 23,24 Long, 2
CONIS, 22 LXI, 22
CONSD, 24
CONSI,21 Mantissa,2,4,5,11,12,29,
COs, 44 32,33,34,39
COSINE, 44 MOVFM, 9
MOVFR, 10
DADD, 35 MOVMF, 13
DADH, 49 MOVRF, 11
DAH, 24 . MOVRM,12
DCOMP, 20 MOVVFM, 15
DDIV, 38 Multiplication, 27,32, 37
DFAC.4,6,7,20,23,24,34,35,
36,37,38 Order,2,3,4,5,11,12,25,
Division,b 28,33,38 26,27,29,32,33,34,39
DMULT, 37 Overflow,6,25,26,27,28,
DSUB, 36 30,31,32,33,35,36,37,38,
39,45
Encoding, 4
Equals,18 POP, 22
EXP, 40 Power, 39

Exponent,2,3,4,5,8,11,12,

29,32,33,34,39

Precision,2,3,4,5,6,7,9,

10,11,12,13,14,19,20,21,22,

23,24,25,26,27,28,29,30,
31,32,33,34,35,36,37,38,
42

CHAPTER 1 Notation and Floating Accumulator

1.1 Notation of Floating Point Numbers

Floating point numbers (single precision and double
precision).are represented in the PC-8300A ROM as follows.
The sign of the number is indicated by the first bit of the

mantissa, @ means positive and 1 means negative. The
mantissa is 24 bits long for single precision number, or
56 bits long for double precision number. The decimal
point is assumed to be to the 1left Most Significant Bit of
the mantissa. The mantissa ranges from 0.5 inclusive to 1
exclusive.

NUMBER=MANTISSA * 2 ~ Exponent

The mantissa is positive, with a one assumed to be where the
sign bit is. The sign of the exponent is the first bit of
the exponent. The exponent 1is stored in excess 80H (ie:
with a bias of 80H). So, the exponent is a signed 8 bit
number with 80H added it. An exponent of zero means the
number is zero,. the other bytes are ignored. . ' -

The above notation is the same notation use by the PC-
8002 and PC-8800.

The memory representation of a single precision floating
point number is as follows:

Bits 17-24 Low order of the mantissa.
Bits 99-16 .Middle order of the mantissa.
Bits 90-07 High order of the mantissa.

17 - 26 @9 - 16 00 - 07 Exponent
————— e ———— e e o o v e e e e e e e +
| 000000200 ;| 2000002020 | VP20V 20 | 20VVVV2Q |
fm———————— Fm———————— Fm———————— m———————— +

Q1234567 Q01234567 01234567

Note: Bit 00 of the mantissa is always 1. (Implied)
This bit is amlso the sign bit.

For example the number 4095 is represented in
precision floating point format as follows:

17 - 24 @9 - 16 0@ - @7 Exponent
tm——————— b ———— bm——————— b —————— +
100000000,11110000/01111111}10001100!
e e e e e o ——————— tm—————— b —————— +

01234567 01234567 21234567

29 - F@ 7F ac

single

With the bits laid out in & logical left to right order the

binary number would be displayed as follows:

.1111 1111 1111 0200 2000 P00@ * 2°@Ch
or

1111 1111 1111. Q000 Q000 000@

Floating Point Accumulators and Related Variables

The PC-8300 ROM maintains a few variables that are used
throughout the math package.

1. VALTYP

FASBH (64139D)

VALTYP indicates the type of number stored in the Floating
Point Accumulator (FAC or DFAC). The encoding is shown

below.

[VALTYP]

2. DFAC

=2 (Integer Number)
=4 (Single Precision Number)
=8 (Double Precision Number)

FB24H (64292D)

Double Precision Floating Point Accumulator.

Double precision storage format:

[DFAC]
[DFAC+1]

[OFAC+2]

[DFAC+3]
[DFAC+4]
[DFAC+5]
[OFAC+6]
[DFAC+7]

=Lowest order of the mantissa

W nRu

=Highest order of mantissa
=Exponent

3. FAC FB28H (64296D)

Floating Point Accumulator.

The floating point accumulator is used for
precision and integer math routines.

Integer storage format:

[FAC] =Low order of the integer
[FAC+1] =High order of the integer

Single Precision storage format:

both single

[FAC] =L ow order of the mantissa
[FAC+1] =Middle order of the mantissa
[(FAC+2] =High order of the mantissa
[FaC+3] =Exponent
4. ARG FB2EH (64302D)
Second argument storage area for double precision math
functions. . - :
[ARG] ' =Lowest order of the mantissa
[ARG+1] = .
[ARG+2] = .
[ARG+3] = .
[ARG+4] = .
[ARG+5] = .
[ARG+6] = .
[ARG+7] =Highest order of the mantissa
5. FBUFFR FB37H (64311D)

FBUFFR is used by the function FOUT (Convert
point number to a printable string) to store
string. The string is terminated by a null code.

[FBUFFR] =First character of the string
[FBUFFR+1]=Second character of the string
[FBUFFR+2]= .
[FBUFFR+3]= .
[(FBUFFR+4]= .
[FBUFFR+5]= .
[FBUFFR+6]= .
[FBUFFR+Nn]=Null code

a floating
the result

CHAPTER 2

2.1

FLOATING POINT INPUT AND CSUTPUT
Input
DESCRIPTION

The FIN routine converts the string representation of a
number in [HL] into an internal representation of the
number, and leaves it 1in FAC. The value type is set
in VALTYP. Syntax 1is not checked in this routine. So
syntax must be checked in the user’s routine, so
that at exit, HL points at the last character of the
string. The string must be terminated by a null. (hex
0) '

NAME FIN
ADDRESS 3726H (14118D)
ENTRY [HL] Pointer to top of string
EXIT : [FAC] Result at this address if
Integer or single
precision.)
or oot
[(DFAC] Result at this address if
Double precision number.
[(VALTYP] 2 (Integer)
[(VALTYP] 4 (Single)
[(VALTYP] 8 (Double)

REGISTERS ALTERED All

It an overflow occurs,the control 1is transferred to
the error handling.

EXAMPLE:

Input String At Exit

"1.5" HL points to "5"

"1.5E+10Q" HL points to "0@"

"ABC" HL points to "C"

Note: All strings must be null terminated.

Output
DESCRIPTION

The FOUT routine converts the number in FAC or DFAC
to a string representation, and leaves it in FBUFFR.
The format is specified in registers A,B and C.

If the format is fixed and the length of digits in the
number exceeds the number of places specified by
register C, "%" is output before the number and the
original contents of the FAC is lost. The terminator
of output string is 00H.

NAME FOUT
ADDRESS 38A8H (14504D)
ENTRY
[FAC] "I Integer or Single
Precision.
or
[DFAC] It Double Precision.
[VALTYP] 2 (Integer)
[VALTYPY 4 (single)
[vALTYRP] 8 (Double)

(Al bit

bit

bit

bit
‘bit

bit

bit

bit

[B] The
of

[C] The

exponent).

EXIT

Cutput free format - .

OQutput fixed format

Group the digits in the integer part
of the number into groups of three and

separate the groups by commas.

Fill the leading spaces in the field
with asterisks.

Output with a floating dollar sign.
Qutput sign of a positive number.

Output the sign of the number after
the number.

Unused
Output in floating point notation.

Qutput in fixed point notation.

number of places in the field to .the left
the decimal point. . ’

number of places in the fleld to the right of
the decimal point (includes the decimal point, but
does not 1Include the 4 positions for the

[FBUFFR] Character

REGISTERS ALTERED All

CHAPTER 3 FLOATING POINT

3.1

3.1.1

Single Precision Numbers

MOVEMENT

Move number from memory [HL] to FAC

NAME

ADDRESS

ENTRY

EXIT

REGISTERS ALTERED

MOVFM
31D00H (12752D)

[HL] Pointer to single
precision number

{Fac] Single Precision Number.

(el,[cl, (o], [E], [(H], [L]

1.

Move registers (B,C,D,E) to FAC

NAME
ADDRESS
ENTRY
EXIT

REGISTERS ALTERED

10

MOVFR

3103H (12755D)

None
[FAC]

(pl, [E]

Single precision number

Move FAC to registers (B,C,D,E)

NAME

ADDRESS

ENTRY

Exit

REGISTERS ALTERED

11

MOVRF

31DEH (12766D)

[Fac]

(8]
[c]
(o]
(E]

Single Precision Number.

Exponent
High order of Mantissa

Middle order of Mantissa
Low order of Mantissa

(8l,[cl,[pl,(E],[H], (L]

Get number in registers (B,C,D,E) from memory [HL]

NAME

ADDRESS

ENTRY

Exit

- REGISTERS ALTERED

12

MOVRM

31E1H (12769%D)

[HL]

(8]
fcl
(bl
(el

Pointer to single
precision number

Exponent

High order of Mantissa
Middle order of Mantissa
Low order of Mantissa

(el,fcl,(pl,[E].[H], (L]

Move number

NAME

ADDRESS

ENTRY

EXIT

from FAC to memory [HL]
MOVMF
31EAH (12778D)

[HL] Pointer to memory area for
single precision number

{HL] Single precision number

REGISTERS ALTERED [al,(81,(p0l,[E],[H], L]

[HLI=[HL]+4

13

Move number from [DE] to [HL]

NAME
ADDRESS

ENTRY

EXIT

REGISTERS ALTERED

14

MOVE

31EDH (12781D)

[DE] Pointer to single
precision number
[HL] Pointer to memory area

for single precision number

[HL] single precision number

{al,(B],(D],[E], (H], (L]
[HL]=[HL J+4

3.2 Any Type Number

3.2.1 Move any type value from [DE] to [HL]
NAME MOVVFM
ADDRESS 31F2H (12786D)
ENTRY (DE] Pointer to memory area
for value
(vaLTYP] 2 (Integer)
- 4 (Single)
8 (Double)
EXIT : [HL] Vvalue

REGISTERS ALTERED [A],[81],[D],[E], [H],[L]

15

Move any type value from memory [HL] to FAC

NAME

ADDRESS

ENTRY

EXIT

REGISTERS ALTERED

16

VMOVAF

32184 (12834D)

(HL] Pointer to value
[VALTYP] 2 (Integer)
A (single)
8 (Double)
[FAC] value

{al, (8], {D].[E], (H], [L]

Move any type value from FAC to memory [HL]

NAME
ADDRESS

ENTRY

EXIT

REGISTERS ALTERED

17

VMOVMF

32214 (12833D)

[(HL]) Pointer to memory area
for value

[(VALTYP] 2 (Integer)
4 (single)
8 (Double)

(Fac] value

CHAPTER 4

4.1

COMPARISON

Integer

DESCRIPTION

The ICOMP routine compares two integer numbers in HL
and FAC, and leave the result in A.

NAME

ADDRESS

ENTRY

EXIT

REGISTERS ALTERED

18

IcomP

[DE]
[HL]

A=-1

fal

‘32594 (1288%D) -

First argument
Second argument

If the first argument is -
less than Second
argument.

If the first argument
equals Second argument.‘

If the first argument is
greater.. than - Second

‘argument.

Single Precision

DESCRIPTION

The FCOMP routine compares two single precision numbers
in registers and FAC, and leave the result in A.

NAME
ADDRESS

ENTRY

EXIT

REGISTERSiALTERED

19

FCoMP

322EH (12846D)

[8],[cl,[p]l,[E] First argument
[FAC] Second argument
A=l it tirst arg. (Second arg.
A=0Q it first arg.=Second arg.
A=-1 if ftirst arg.)Second arg.
A,H,L

Double Precision

DESCRIPTION

The DCOMP routine compares two double precision
numbers in ARG and DFAC and leaves the result in A.

NAME

ADDRESS

ENTRY

EXIT

REGISTERS ALTERED

20

>>> D>

pcomp

326FH (12911D)

[ARG] First argument

[DFAC] Second argument

=1 if first arg. (Second arg.
=0 it first arg.=Second arg.
=-1 if first arg.)Second arg.
11l

CHAPTER 5 CONVERSION

5.1 Integer to Single

DESCRIPTION

The CONSI routine converts the integer in FAC to a
single precision number, and leaves it in FAC.

NAME CONSI

ADDRESS 32EDH (13037D)

ENTRY [Fac] Integer

EXIT (Fac] Single precision number

[VALTYP] 4

REGISTERS ALTERED All

- 21

5.2 Single to Integer

ERROR:

NORMAL. :

DESCRIPTION

The CONIS routine truncates the single precision number
in FAC and converts it to an integer, and leaves it in
FAC. If the argument is too big (arg. (-32768
or arg. > 32767), it can not be converted to an
integer. So the control is transferred to the
error handler.

NAME CONIS

ADDRESS 32ADH

ENTRY [Fac] Single precision number
EXIT [FAC] Integer

[vALTYP] 2
REGISTERS ALTERED All
Sample program

LXI H,NORHAL . Get return address

H
PUSH H i Push it on stack
CALL CONIS : Call CONIS
POP H Error handling routine

Reset stack pointer

Normal return

22

5.3 Single to Double

DESCRIPTION

The CONDS routine converts the single precision number
in FAC to a double precision number and leaves it in

DFAC.

NAME

ADDRESS

ENTRY

EXIT

REGISTERS ALTERED

23

CONDS
3304H (13060D)
[FaC] Single precision number

[DFAC] Double precision number
[vALTYP] 8

al,[H], [L]

5.4 Double to Single

DESCRIPTION

The CONDS routine converts the double precision number
in DOFAC to a single precision number and leaves it in

FAC.

NAME

ADDRESS

ENTRY

EXIT

REGISTERS ALTERED

24

CONSD
32DAH (13218D)
[DFAC] Double precision number

[Fac] single precision number
[VALTYP] 4

All

CHAPTER 6 Basic Operation

6.1 Integer Arithmetic

Integer arithmetic is performed with 16 bit signed integers.
The values range from +32767(7FFFH) to -32768(FFFFH).

6.1.1 Integer addition
DESCRIPTION
First argument is added to the second argument. Result
is in the "FAC". When an overflow occurs, the result

is converted to a single precision number and
placed in the FAC, and the VALTYP is set to 4.

NAME IADD
ADDRESS 3403H (13315D)
ENTRY . [DE] First argument

[HL] Second argument
EXIT

REGISTERS ALTERED - All
Conditién: No overtlow
[FAC]=[HL]=Result in integer.

Integer storage format:

[FAC] =L.ow order of the integer
[FAC+1] =High order of the integer
[VALTYP] =2 Integer

Condition: Overtlow
[VALTYP] =4 Single Precision

[FAC]. =Result in single precision.

25

Integer Subtraction

DESCRIPTION

The second argument is subtracted from the fTirst. The
result is left in the "FAC". When an overflow
occurs, the result is converted to a single
precision number and left in the FAC , and the VALTYP

is set to 4.

NAME Isu8
ADDRESS 33F7H (13323D)
ENTRY {DE] First argument

[(HL] Second argument
EXIT

REGISTERS ALTERED All
Condition: No overtflow
[FAC]=[HL]=Result in integer.
Integer storage format:

[FAC] =Low order of the integer
[FAC+1] =High order of the integer

[VALTYP]

2 Integer .

Condition: Overflow

[VALTYP]

4 Single Precision

[FacC] =Result in single precision.

26

Integer Multiplication

DESCRIPTION
The fTirst argument is multiplied by the second. The
result is left in the "FAC". When overflow occurs,

the result is converted to a single precision
number and left in the FAC, and the VALTYP is set to 4.

Name IMULT
Address 3423H (13347D)
ENTRY [(DE] First argument

[HL] Second argument
EXIT

REGISTERS ALTERED All
Condition: No overflow
{(FAC]=[HL]=Result in integer.
Integer storage format:

[FAcC] =Low order of the integer

[FAC+1] =High order of the integer
LVALTYP] =2 Integer

Condition: Divide by zero.

Control is transferred to the error handler.

27

Integer Division
DESCRIPTION

The first argument is divided by the second. The
quotient is left in [DE] and the remainder is left in
[HL]. If the divisor is @, a "Division by zero" error
occurs, and control is transferred to the error
handler.

NAME ID1IV
ADDRESS 347AH (13434D)
ENTRY [(DE] First argument (Dividend)

[HL] Second argument (Divisor)

EXIT
[DE] Remainder
fHL] Quotient
REGISTERS ALTERED All

Condition: Overflow

[VALTYP] =4 Single Precision

- [FAc] =Result in single precision.

kxxxxxXThig function does not calculate the remainder correctly.

a8

Single Precision Arithmetic

Single precision arithmetic is performed on four byte

numbers. The numbers have a 3 byte mantissa and
exponent with a bias of 80h.

Single Precision storage format:

[FAC] =Low order of the mantissa
[FAC+1] =Middle order of the mantissa
[(FAC+2] =High order of the mantissa
[(FAC+3] =Exponent

The memory representation of a single precision
point number 1s as follows:

Bits 17-24 Low order of the mantissa.
Bits @9-16 Middle order of the mantissa.
Bits 00-07 High order of the mantissa.

17 = 24 09 - 16 00 - 97 Exponent
e —————— f———————— Fo e ——— o ———— +
1000000200 | 20000090 | 20020000 | 22RAV00QA |
Fom—————— - o ———— e ————— +
P1234567 01234567 01234567

29

a 1 byte

floating

.2.

Single Precision Addition
DESCRIPTION

The second argument is added to the first argument.
The result is stored in FAC.

NAME FADD
ADDRESS 2EBBH (11963D)
ENTRY [HL] Address of the first argument.

[FAC] second argument.
EXIT

REGISTERS ALTERED All -

Condition: No Overflow
[FAC] Result

Condition: Overflow

Control transferred to the error handler.

30

Condition:

Single Precision Subtraction

DESCRIPTION

Subtracts the second argument from the first

argument, and leaves the result in FAC.

NAME FsuB

ADDRESS 2EC1IH (11969D)

ENTRY
(HL] Address to first argument.
[FAC] Second argument.

EXIT

REGISTERS ALTERED All
Condition: No Overflow
[FAC] Result
Overflow

Control transferred to the error handler.

31

.2,

Single Precision Multiplication

DESCRIPTION

Multiplies first argument by second argument, and
leaves the result in FAC.

First argument storage format.

Exponent
High order of Mantissa

Middle order of Mantissa
LLow order of Mantissa

Second argument storage format.

[FAC] Result

Condition: Overflow

Low order of the mantissa
Middle order of the mantissa
High order of the mantissa
Exponent

NAME FMULT
ADDRESS 3040H (12352D)
ENTRY

(8]

cl

(D] .
(E] -
[Fac]
-[FAC+1]
[FAC+2]
[FAC+3]

TEXIT
REGISTERS ALTERED All
Condition: No Overflow

Control transferred to the error handler.

32

Single Precision Division

DESCRIPTION

Divides the first argument by second argument, and

leaves the result in FAC.

NAME FDIV
ADDRESS 30A5H (12453D)
ENTRY

First argument storage format. (Dividend)

(8l Exponent

[c] High order of Mantissa

(D] Middle order of Mantissa

(e] Low order of Mantissa

. Second argument storage format. (Divisor)

[FAC]) Low order of the mantissa

[FAC+1] Middle order of the mantissa

[(FAC+2] High order of the mantissa
Exponent

[FAC+3]

EXIT
REGISTERS ALTERED All
Condition: No Overflow

{FAC] Result

Condition: Overflow or divide by zero.

Control transferred to the error handler.

33

Double Precision Arithmetic

When performing double precision arithmetic the arguments
must be in the following format. The result will be stored

in the Double

Precision Floating Point Accumulator. (DFAC)

The fTirst argument is stored in the Double Precision Floating
Point Accumulator. (DFAC) FB24h (64292d)

{OoFAC]

[OoFAC+1]
[OFAC+2]
[DFAC+3]
[OFAC+4]
[OFAC+5]
[DFAC+6]
[OFAC+7]

=Lowest order of the mantissa

The second argument is stored in the Double Precision
argument. (ARG) FB2Eh (64302d)

[ARG]

[ARG+1]
[ARG+2]
[ARG+3]
[ARG+4]
[ARG+5]
[(ARG+6]
[ARG+7]

=_Lowest order of the mantissa

W un

=Highest order of mantissa
=Exponent

34

Double Precision Addition

DESCRIPTION

The first argument is added to the second argument.

NAME
ADDRESS

ENTRY

EXIT

DADD
34F8H (13560D)

{DFAC] First argument
[ARG] Second argument

REGISTERS ALTERED All

Condition:

Condition:

No Overflow
[DFAC] Result
Overftlow

Control transferred to the error handler.

35

Double Precision Subtraction

DESCRIPTION
Subtracts the second argument from the first
argument, and leaves the result in FAC.
NAME bsuB
ADDRESS 34F1H (13553D)
ENTRY
[DFAC] First argument
[ARG] Second argument
EXIT

REGISTERS ALTERED All

Condition: No Overflow
[DFAC] 'Result
Condition: Overflow

Control transferred to the error handler.

36

Double Precision Multiplication
DESCRIPTION :

Multiplies the first argument by second argument, and
leaves the result 1in FAC.

NAME DMULT
ADDRESS 3639H (13881D)
ENTRY
(oFac] First ergument
(ARG] Second argument
EXIT

REGISTERS ALTERED All B

Condition: No Overflow
(DFAC] Result
Condition: Overflow

Control transferred to the error handler.

37

Double Precision Division
DESCRIPTION

Divides the first argument by second argument, and
leaves the result in FAC.

NAME DDIV
ADDRESS 3691H (13969D)
ENTRY .
[DFAC] First argument (Dividend)
[ARG] Second argument (Divisor)
EXIT

REGISTERS ALTERED All

Condition: No Overftlow
[DFAC] Result
Condition: Overflow or Divide by zero.

Control transferred to the erfor handler.

38

CHAPTER 7 Mathematical Functions

7.1 Power

ODESCRIPTION

Calculates the formula Y x where Y is the base and x is
the exponent.

NAME FPWR
ADDRESS 3D5EH (15710D)

ENTRY

First argument.

(8] Exponent

[c] High order of Mantissa
[D] . Middle order of Mantissa
[E] Low order of Mantissa

- Second argument.

[FAC] : Base
EXIT
Condition: No error

[FAC] Result
Condition: Error

Control is transferred to the Error Handler.

1 - Illegal Function Call:

Base is negative and exponent is not an integer.
2 - Divide By Zero:

Base is Zero and exponent is negative.
3 - Overflow:

Number is out of range.

39

EXP

DESCRIPTION

Compute the Natural Logarithm’s base value.

NAME

ADDRESS

ENTRY

EXIT

EXP

3DADH (15789D)

{Facl - Argument

REGISTERS ALTERED All

Condition:

Condition:

No error
[FAC] . Result

Error

‘The value in [FAC] exceeded 87.33655.

Control is transferred to the error
handler.

490

LOG

DESCRIPTION

Compute the Natural Logarithm’s base value.

NAME LOG
ADDRESS 2FFCH (122840D)
ENTRY (FAC] Argu&ent
EXIT
REGISTERS ALTERED All
Condition: No error

(Facl Result

Condition: Error

Illegal Function Call: -

The argument is negative'or Zero.
Control 1s'trqnsferred to the error
handler. :

41

SGR
DESCRIPTION

Compute the square root of a single precision number.

NAME SGR
ADDRESS 3D4DH (15693D)
ENTRY (Fac] Argument
EXIT

REGISTERS ALTERED All

Condition: No error
[FAC] Result
Condition: Error

Illegal Function Call:

The argument is negative. Control 1is
transferred to the error handler.

42

SIN

DESCRIPTION

Computes the SIN of an angle. The angle

given in radians.
NAME
ADDRESS

ENTRY

EXIT

REGISTERS ALTERED

43

SIN
3EC3H (16@67D)

[FAC] Argument

[FAC] Result
All

must be

cosS
DESCRIPTION

Computes the COSINE of an angle. The angle must be
given in radians.

NAME cos

ADDRESS 3EBDH (16061D)
ENTRY [FAC] Argument
EXIT [FAC] Result

REGISTERS ALTERED All

44

TAN

DESCRIPTION

Computes the tangent of an angle. The angle must be

glven in radians.

NAME TAN
ADDRESS 3FSEH (16222D)
EXIT

REGISTERS ALTERED All

Condition: No error
[FacC] Result
Condition: Overflow

Control transferred to the
handler.

45

error

ATN

DESCRIPTION

Computes arctangent of an angle. The result
given in radians between -pi/2 and pi/2.

NAME

ADDRESS

ENTRY

EXIT

REGISTERS ALTERED

46

ATN

IF73H (16243D)

[FAC] Argument
[Fac] Result
All

is

RND

DESCRIPTION

Generates a random number between @ and 1.

NAME

ADDRESS

ENTRY

EXIT

REGISTERS

ALTERED

47

RND
3E4AH (15946D)

[FAC]<@ A new sequence of random
number is started

[FACl=@ The last random number
generated is returned

[(Facl>o Next random number
generated is returned
[Fac] Result

All

DESCRIPTION OF BASIC PROGRAM FILE HANDLING ROUTINES

CHAPTER 1. Overview

CHAPTER 2. How to know the information of BASIC file
2.1 Procedure to know the information of BASIC +file
2.2 Sample program

CHAPTER 3. Saving a BASIC program in RAM as ".8A" fTile
3.1 Procedure to save BASIC program
3.2 Sample program

CHAPTER Subroutine for loading and saving

SRCBAS

SCNEMP

LDIRSB

SETNAM

LINKER

LINKER1

MAKBAS

RUNC

CHKREG

RESTOQ

MAKBAT

Variables

PP P OONOEPA~WNPE

NP8

.

ERARRARRRRARRARP R

CHAPTER 1 OVERVIEW

This document has been prepared to provide information about
the BASIC binary program Tile (".BA" files) handling. Tha
documentation is divided into three parts, method to obtain ir-
formation about a certain BASIC program file (such as address of
the file in memory, length of the program, and so on), saving a
portion of memory as a BASIC program file and miscellaneous
routines used for BASIC program file handling. -

Similar to other ROM routines, it is the programmer’:s
responsibility to make special ertror handling routines to prevent
control from going back to the ROM error handler. For detailed
information of the error handling, refer to Chapter XX,
"Description of the ROM routines in the PC-8300"

CHAPTER 2 BASIC FILE SET-~UP

2.1 Procedure to Know The Information of BASIC File

1. Set Up File Name ’
[FILNAM] {(=~=~ 1lst character in the file name

[FILNAM+5] (=== 6th character in the file name
[FILNAM+6] (=—- "B"
[FILNAM+7] (e A"
(FILNAM+8] (mmme

2. Search For The File
Search for the file we want to know the information ot
and get the starting address of the text. If the fFile
does not exists,transfer control to the error handler.
CALL SRCBAS : ; Search for the file
JZ FILNF ;I it does not exists,return
; “"File Not Found" error.

3. Get Ending Address

CalLL LINKER

4. Compute Length

2.2 Sample Program

Load the BASIC program file whose name is "SAMPLE.BA"

H
; T+ RUN
; At exit,

3

1.040D:

FILNF:

MYFILE:

flag is on,
[DE]
(HL]

XTI
LXI
LXI
CALL
LXI
MVI
INX
MvI
INX
MVI
caLL

JZ

PUSH
CALL

FPOP
MOV
sSUB
MoV
MoV
SBB
MOV
INX
RET

OB

IXTOPrmM>» Q0
iy

start execution

start address

Length

H,MYFILE
D,FILNAM
B,0006D
LDIRSH

H, FILNAM+6
™M, "B"

H

M, "AN

H

M’N "
SRCBAS
FILNF

D
LINKER1

r

-

>

‘sAMPLE"

14

wr ws ws ws ws us wa

“s

wa ux ws wr ws s

Set up file name to FILNAM

And extension

Search the file

Start address is hold in DHE

If do not exists, "file not
found" error

Save start address of BASIC file
Get end address of BASIC file
into HL 4

Get start address

Compute lerigth

(HL : =HL-DE+1)

All done
File not found error
Put your error handling routinae

here

Name of the file to be load

CHAPTER 3 SAVING A BASIC PROGRAM iN RAM AS A ".BA" FILE

In this chapter, the method to save a BASIC program that
resides in memory into RAM tTile as a ".BA" file is described. The
program should be written in intermediate language. The routines
described later in this chapher save the contents of a speciried
portion of memory exactly as they are, Jjust appending some cori-
trol information. The control information consists of two
words, load address and length.

Note current non-registered program is lost.
3.1 Procedure To Save A BASIC Program

To save a BASIC program in memory as a ".BA" file, follow
the steps below. The address of the individual routines used in
this procedure will be described later in this chapter.

l.oad a BASIC program in RAM as a non-registered program

1. Reset all of the variables, and update some pointers
2. Make the largest hole possible before the ASCII files
3. Update some pointers

4. Transfer the program

5. Delete the excess space, and update some pointers

Save the program as a ".BA" file
1. Set up the ftile name

Set up the file name in FILNAM, this is the same step
used to open an ASCII file except the extension shnould
be "BA" in the case of BASIC program save.Body of the
file name (ie: string that precedes the extension)
should be less than or equal to 6 characters long. If
it is less than 6 characters long,the rest should be
padded with spaces (20H).

[FILNAM] (=== 1lst character of the file name
[FILNAM+5] {=—~=~ 6th character of the file name
[FILNAM+6]) (=== "B"
[(FILNAM+7] (=== "A"

[(FILNAM+8] (= " "

2. Check if the current program is registered or not

CalL. CHKREG ; Is current program registered?
INZ FCERR ; Yes error

3. Bearch Tor a Tile with tne same name

Search the directory for a file with the same name as
the one that we want to save. If it exists, delete it.
Obviously you can abort saving the new one, instead of
deleting old one.)

CALL SRCBAS 3 Search directory for the file
; whose name is in FILNAM
CNZ KILBAS 5 Kill old one if exist

4. Fix up directory structure

Refer to the “Description of ROM raoutines in PC-8302A"
for detail of LNKFIL routine.

CALL LNKFIL : 5 Fix up directory structure

5. Search directory for empty (free) slot
To register the file; make sure there is free slot in
the directory and remember the location of the slot.If

no free slot is available, abort saving.

CALL SCNEMP 5 searcn for empty slot
Save address of directory

6. Put tTile name into directory
Set file name and attributes into the directory slot
gained by the SCNEMP call. New Basic files are stored
just below the lowest "DO" file, at the top of the

Basic file storage area.

[HL] {(--- Address of directory slot gained by SCNEMP

call
[DE] {(~—- Top address of BASIC text (ie: current
TXTTAB)
(Al <(-—-- 80H
) This is attribute for all ".BA" files
CALL SETNAM ; Put name into directory

7. Make the Basic File
CALL MAKBAS
Make a hole at ASCTAB (the end of the ".BA"
files) ., for the null-basic-file, and pad the nols=
with spaces (20H).

3.2 Sample Program

5 This sample program saves a BASIC program as a BASIC file
; "SAMPLE.BA"and loads BASIC program in RAM as a

;3 non-registered program. The information of the text is in
; SOURCE and LENGTH

LOAD:

CAL.LL SCCPTR ; Get rid of pointers

CALL LNKFIL ; Link all files

LHLD NULDIR+1 3

SHLD TXTTARB H

LLXI H,NULDIR H

SHLD DIRPNT 3

LHLLD VALTAB ; Reset variables

SHLLD ARYTAB 3

SHLLD STREND ;

Cal.l. MAKBAT ; Make a possible largest hole at
3 current ; ASCTAB-1.

LHLD ASCTABR ; Update ASCTAB

DAD B 3

SHLD ASCTAB H

LHLD ASCTAB 3 Address of upper limit

XCHG H

LHLD LENGTH ; Length of text

SHLD TEMP HE B o

LHLD SOURCE : ; Get top address af text that is

" ; to be loaded :

Mov B,H HE

MOV C, L 3

LHLD TXTTARB 3 Load from TXTTAB

LOAD1:

LDAX B ; Get a byte from source

INX B8 ; and increment its pointer

MOV M,A 5

INX H ;

CALL COMPARE ; Compare HL and DE

INC OMERR ;

PUSH H ; Is end of TEXT?

LHLD TEMP ;

DCX H ;

MOV A,H ;

ORA L :

JZ LLOADZ2 ; Yes, end of text

SHLLD TEMP 3 No, transfer next byte

POP H H

JMP LOAD1 3

LoADZ2:

POP H ;

CALL LINKER ; Search an end of loaded program,
; and get it in HL

INX H ;

XCHG ' 5

LHLD A3CTASB H

XCHG H

CALL RESTQO ; Delete from HL to DE-1

; Save BASIC program
; The file is named as

SAVE:

RETURN:

FLERR:

LXI

DAD

SHLD
LXI

SHLD
LXI
LXI
LXT
cALL

LXI
MVI
INX
MVI
INX
MVI

caLL
JINZ
CALL

CNZ

CALL
CALL
SHLD
MVI

XCHG
LHLD
XCHG
CAaLL
caLL

LXI
SHLD
RET

LHLD

SPHL

H, 2000+

SP

MYSTACK
H, FLERR

ERRIMP
H, MYFILE
D, FILNAM
8,080060
LDIRSB

H, FILNAM+6
, "BII

KILBAS
LNKFIL
SCNEMP
DIRPNT

A, 100000008

TXTTAB

SETNAM
MAKBAS

H, B@0aH
ERRIMP

MYSTACK

- W

aE WE wE W ws

ur we

in memory into RAM file.
“SAMPLE.BA"

Remember current stack pointer
value preparing to error

In case of an error that
transfers

control to BASIC’s error handling
routine,we need use special
error trapping to gain
controlback

from it, and reset stack pointer

Force control to come back Lo me
in case of an error

Activate error trapping

Set up file name to FILNAM

Copy 6 bytes from MYFILE into
FILNAM

Set up extension

It should always be "BA"

Extension field is 3 bytes long,
so pad with a space

Is current program registered?
Yes error

Search directory for a file of
same name as we want to create
now

If exist, delete old one

Fix up directory structure

Scan empty slot in directory

Is file attribute

TXTTAB holds loc where BASIC prog
program is saved

Set up directory

Make a room for non reg program

All done
Reset error trapping

Error trap code. Control comes
here when directory is full at
SCNEMF call.

Reset stack pointer

Put your own error handling code
here

FCERR:

COMPARE :

MYFILE:

MYSTACK:

SOURCE :
LENGTH

TEMP :

CHAPTER 4

JMP RETURN H
; Illegal function call error

. ;3 Put yOQP error handler here
IJMP RETURN ' H

;3 Out of memory error
; Put your error handler her:

JMP RETURN H

MOV A, H ;

sUuB D H

RNZ 5

MOV A, L ;

suB E H

RET 3

DB "SAMPLE" 3 File name

DS Q2D ; Stack pointer value is stored
; here to reset it in case of error

DW @CQ@OH f ; -Top address of text

DW Q100H ; Length of text

DS 22D ; Temporary storage

SUBROUTINE FOR LOADING AND SAVING .

4.1 SRCBAS

NAME SRCBAS

ADDRESS 2292H (8850D)

ENTRY File name should be set up in
FILNAM

EXIT Same as SRCNAM (See "Descriptiorn of

the ROM routines in PC-8300")
REGISTERS ALTERED All
DESCRIFPTION
SRCBAS searches the directory for a ".BA"file.
The name of the file to be searched for should be
setup in FILNAM.

4.

3

4.4

4.

3

NAME
ADDRE
ENTRY
EXIT

REGIS
DESCR

LDIRSH

NAME
ADORE
ENTRY

EXIT
REGIS
DESCR

SETNAM

NAME
ADDRE
ENTRY

EXIT
REGIS
DESCR

LINKER

SCNEMP
33 2203H (89150)
Nore
{(HL] Address of empty

directory slot

TERS AL.TERED (al,(81,(c],H], (L]

IPTION

SCNEMP is used to search the directory for an
empty slot. If an empty slot does not exist, bne

control is transferred to BASIC’s ROM routine.The
user program must be take care of this.

LDIRSB

3s 6C78H (27768D)
[HL] Source address
[(DE] Destination address
[(8c) Length
None

TERS ALTERED All

IPTION C .

Refer to Chapter XX, “Description of the ROM
routines ‘in the PC-8300BA" for detailed of the
LDIRSB routine. :

SETNAM

3s 2435H (9269D)
[FILNAM] File name
[al Directory flag
[DE] Top address of file
[HL] Address of directory
None

TERS ALTERED (al,[B],(H], L]

IPTION

SETNAMis used to put the filename and file
attributes (directory flag) into a slot in direc-
tory. The slot is searched for by the SCNEMP call.

NAME LINKER

ADDRESS @714H (1812D)

ENTRY The beginning of the BASIC text
should be set up in TXTTAB

EXIT [(HL] The end address of BASIC text

REGISTERS ALTERED All

DESCRIPTION

The LINKER goes through the BASIC program storage,
and fixes all of the link pointers.

4.6 LINKERL

NAME i LINKER1

ADDRESS @718H (1816D)

ENTRY [DE] The beginning of BASIC text

EXIT (HL] The end address of BASILC
text

REGISTERS ALTERED All.
DESCRIPTION
Same as LINKER.

4.7 MAKBAS

NAME MAKBAS
ADDRESS . 23D@H (9168D)
ENTRY None

EXIT None
REGISTERS ALTERED All
DESCRIPTION

MAKBAS makes a hole at ASCTAB (end of".RBA" Tiles)
for null-basic-file,and pad 20H. (means end of
BASIC text) at the hole.

4.8 RUNC
NAME RUNC
ADDRESS 3FF5H (163730)
ENTRY None
EXIT None
REGISTERS ALTERED All including Stack Pointer
DESCRIPTION

This routine initializes the variable and array
space by reseting ARYTAB (The end of simple
variable space) and STREND (The end of array
storage) It then initializes the stackpointer and
resets some flags {(the data on stack is lost
except the return address ([{sP],(sSP+1]).

4.9 CHKREG

NAME CHKREG
ADDRESS 226AH (88100)

ENTRY None
EXIT Zero is clear, 1if the current
program is registered

4.19 RESTOO

NAME 7 RESTQOO

ADDRESS 28CBH (104430)

ENTRY [HL] Start address
(DE]-1 End address

EXIT Nons=

DESCRIPTION

The RESTO@ fixes up files to delete the useless
area made by MAKBAT.

4.11 MAKBAT

NAME MAKBAT

ADDRESS 6518H

Purpose Make a possible largest hole

ENTRY Start address of the hole should be
v set up in ASCTAB

EXIT (BC] holds its length

DESCRIPTION :

The MAKBAT make a possible largest hdle at
[ASCTAB]. The size of the hole is calculate by
following formula. SIZE=[sSP]l-([STREND]+20@D)

4.12 Variables

1. DIRPNT F979H (63865D)
Points to directory of current BASIC program

2. FILNAM FB78H (64376D)
The filename is stored here.lt is 9 bytes long, the
first 6 bytes are used to store the body of the file
name, and the rest for the extension.If the lengthh of
the body and/or extension is less than the maximum,
the space should be filled with 20H.

3. TXTTAB F45DH (62557D)
Pointer to the beginning of the text.

4. NLONLY FBACH (64396D)
Flag to show if the program is loading or not. Non-zero
if loading program.

5. ASCTAB FAELH (64225D)

Pointer to the start of the ASCII files

VALTAB . FAESH (642290)
Pointer to the start of the simple variable space

ARYTAB FAZ7H (64231D)
Pointer to the beginning of the array table

STREND FAE9H (642330D)
End of storage in use

NULDIR F87@+ (636000)
Directory for non-registered program
NULDIR+1 holds its address

DESCRIPTION OF MACHINE CODE FILE HANDLING ROUTINES IN PC-8300A
CHAPTER 1. Overview

CHAPTER . Saving machine code program into RAM file
Procedure to save machine code program

Sample program

NNN
NP

CHAPTER Loading a machine code frile
Machine language program load routine

Procedure to load a machine code program

oW
N

w

Sample program

Subroutine for loading and saving
SRCCOM ’
SCNEMP

LDIRSB

SETNAM

MAKHOL

VARIABLES

CHAPTER

PARPAPRRPN WG

COP WD P

CHAPTER 1 OVERVIEW

This document has been prepared to provide information about
machine language files (".C0" files) handling. The documentation
is divided into three parts: loading a machine code file into
memory, saving a machine code in memory into a RAM file and mis--
cellaneous routines used for machine code file handling.

3imilar to other ROM routines, it 1is the programmer’ s
responsibility to make special error handling to prevent control
from going back to the ROM error handler. For detailed informa-
tion of the error handling, refer to Chapter XX, "Description of
the ROM routines in the PC-8300A".

CHAPTER 2 SAVING A MACHINE CODE PROGRAM INTO A RAM FILE

In this chapter, the method to save a machine code program
that resides in memory into a RAM file as a ".CO0" file is
described. The object to be saved does not need to be @ machine
code program, it can be a binary data file. The routines
described later in this chapter save the contents of a specified
portion of memory exactly as they are, Jjust appending some con-
trol information.

The control information consists of three words; load
address, length and execution address. The contents of the fila
is always loaded back to the location where the contents (machine
code program) were located when saved. The load address in tie
file contains the location. Note that this is not the address of
the file itself.

2.1 Procedure to Save Machine Code Program

To save a machine code program in memory as a ".CO" file,
use the steps below. Address of individual routines used in this
chapter will be described later in this document.

1. Set Up The File Name .

" Set up the file name in FILNAM. This is the same .step
used to open an ASCII file excépt the extension should be "CO" in
the case of a machine code program save. Body the of file name
(ie:string that precedes the extension) should be less than or
equal to & characters long. If it is less than 6 characters long,
the rest should be padded with spaces (20H).

FILNAM {-—-—= 1lst character of file name

FILNAM+S (—-=— 6th character of file name
FILNAM+6 (-—— "(C"
FILNAM+7 (—==-= "0O"
FILNAM+8 (=== " "

2. Set Up Parameter
Set the address of the machine code program, its length
and execution address.

BINADR {(=—=— Start address of binary data (2 bytes)
BINLEN (=== LLength of binary data (2 bytes)
BINEXE {~-— Execution address (2 bytes)
@ if this file needs not be executablae
at IPL.

3. Fix up directory structure
Refer to Chapter XX, "Description of the ROM Routine in
the PC-830QBA" for detail of LIKFIL routine.

CALL LNKFIL 3 Fix up directory structure

4. Search For The File of the Same Name.

Search the directory for a file that has the same name
as the one that we want to save the machine code program. IV 1itn
exists, delete it. Obviously here you can abort savimng the rnew
one, instead of deleting the old one.

CALL SRCCOM ; Search directory for the file
; whose name 1is FILNAM
CNZ KILCOM i ; Kill old one if exist

5. Search Directory for Empty (Free)} Slot

To register the file, make sure there is a free slot in
the directory and remember the location of the slot. If no frea
slot is available, abort saving.

CALL SCNEMP - - ; Search for empty slot
; Save address of directory

6. Allocate Room in RAM File

Allocate room in the RAM for the machine code program
and control information (location, length and execution address
of the machine code program). The length of the control ‘informa-
tion is 6 bytes long (ie: 3 words). MAKHOL is the routine to al-
locate room in [BC] (length) at [HL]. Here [VARTAB] tells the
location where the room is to be allocated. The "C0" file is
usually saved just under the address pointed to by VARTAB, so the
starting address of other files does not need to be changed.
However it is a good idea to call LNKFIL after saving a new CO
file. When using MAKHOL be sure to adjust the pointer, BINTAB,
because MAKHOL changes BINTAB!

[HL] (~-- [VARTAB]

(BC] <(--- [BINLEN]+6

CALLL MAKHOL ; Allocate room

JC OMERR 5 Error if out of memory

7. Copy Control Information
Copy control information to the top of the room allo-

cated in above step.
8. Copy Machine Code Program

Copy the machine code program into the directory slot ob-
tained by SCNEMP the call.:

[HL] <(--- [BINADR] ; Address of machine code file to

be saved

3.

1a.

obtained

call

HOL call

11.

[DE] (~=~-= (Top address of the room)+6
;Location in RAM File where Ethe
; program is saved

{(8C] (--- [BINLEN] ; Length of the program

CALL LDIRSB Do block transfer

-y

Reset B8INTARB

For BASIC bookkeeping
Put File Name into the Directory
Set file name and attributes into the directory slot
by SCNEMP call.) -
[HL] (-~-— Address of directory slot gained by SCNEMP
[DE] (—-=- Address of room in RAM file. One used at MAK-
(Al (=== AQH ,
This is attribute for all ".C0O0" files
CALL SETNAM ; Put name into directory

Fix up directory structure
CALL LNKFIL

2.2

s ws wa

Entr

MAKHOL
LNKFIL

HEADLN
BINTAB

VARTAB

Sample Program to Make a New CO File

Make New CO File

y: [STRADR]
[LENGTH]
(EXECAD]
[HL]

EQU
EQU

QU
EQU

EQu

MAKECO:

MVI

MoV
PUSH
LHLD
LXI
DAD

- Mow
MOV
LHLD

start address of CO file data
length of data

execution address

directory address for this C0O file

6CBAH 3 Make room

233AH ; make up directory address
field

& s header length of co tile

FAE3 : lowest address of existing

; CO file

FAES ' ; lowest address of variable

table

A,101000028 Set directory flag as CO

file
M,A ; register it
H ; save directory address
LENGTH ; get file length of new CO
B, HEADLN ;. set header length
B ; get total length of new CO
file” ’ '
B,H ; set length in [BC]
Cc,L) ;) .
BINTAB ; [HL] lowest address of
' ; existing CO files
PUSH H
7 save current BINTAB
LHLD VARTAB
; [HL] just above highest
; CO file
caLL MAKHOL
; try to make a hole
JC MEMFUL

Jump if there iasn’t
enough room

-y wa

XCHG
;save the top address of the ;
hole

POP H
;5 recover BINTAB

SHLD BINTAB
; adjust BINTASB

XCHG
; restore TOP of hole

POP D
; [DE] directory address

INX D
; advance to address field

MOV . A, L

; set start address
' STAX D

INX o
MoV A, H
STAX D

; To register the file name in the directory is omitted

3

XCHG ' ; [DE] top of vacant room

MVI B, HEADLN ; set header length

LXI H, STARAD ;3 offset of header data
COPYHD :

MoV A, M 1 get header data

3TAX 5] "; store it in file

INX D

INX H

DCR B ; end of header data?

INZ COPYHD ; copy 3 address as header

LHLD LENGTH ; get data length

MOV B,H ; set length in [RBC)]

MOV C,H

LHLD STARAD 5 [DE] destination address

; [(HL] source address

COPYLP:

MOV A,M ;5 -copy contents of file

STAX D

INX D "

INX H : .

DCX B ; count down

MOV A,B ; end of data?

ORA C .

INZ COPYLP contirue till end of data

CALL LNKFIL update start addresses of

H
;s other files in directory
; area RET

-
2

; ERROR HANDLING ROUTINE

MEMFUL @

H Memory full error
H

; DATA AREA

STARAD: DS 2
LENGTH: DS 2
EXECAD: DS 2

END

2.21 Sample Program

This sample program saves Q800H bytes in memory from AQ2@AH
(42960D) as a machine code file "SAMPLE.CO"

Save machine code program in memory into RAM file
The program
The file is

from it,

LXI

DAD

and
SHLD
LXI

SHLD
LXI
LXI
LXI
CALL

LXI

MVI

INX-
MVI
INX

. MVI

LXI

LXT

LXT

CALL
CALL
CAL.L

CN<Z
CALL

PUSH
LHLD
PUSH
LXI

LHLD

PUSH
DAD

named as

H, 2000H

SP

5

is assumed to start at AQQQOH and Q8QQH bytes long.
“SAMPLE.CO"

Remember current stack point
value

preparing to error

In case of an error that
transfers

control to BASIC’s error handling
routine, we need use special
error

trapping to gain control back

reset stack pointer

MYSTACK
H, ERROR

ERRIMP
H, MYFILE
D,FILNAM
B, 00060
LDIRSHB

"H, FILNAM+6

M,"C"
H .

M, "0"
HA

M, " "

H, MYBIPA

D, BINADR

B, 006D
LDIRSB
LNKFIL
SRCCOM

KILCOM
SCNEMP

H
BINTAB
H
B8, 00060
BINLEN

|
8

ME WE W W

Force control to come back to me
in case of an error

Activate error trapping

Set up file name to FILLNAM

Copy 6 bytes from MYFILE irto
FILNAM

Set up extension

It should always be "CO"

Extension field is 3 bytes long,
so pad with a space
Set up address of machine code

program, length and execution
address into BINADR, BINLEN, and
BINEXE

Since BINADR,BINLEN and BINEXE
stay together

Fix up directory structure
Search directory for a file of
same name as we want to create
Nnow.

If exists, delete old on=2
Scan empty slot in .directory
where

our file name is out

Save the address

Save current BINTAB

Get length of machine code
program

Save it for future use

6 bytes for control information

MOV
MOV
LHL.D
SHL.D
CNC

JC
XCHG
LXI

L.XI
CALL
LHLD

POP
cALL
POP
SHL.D
POP
MVI

XCHG
LHLD

XCHG

CALL

CALL
RETURN::

LXI

SHLD

RET
ERROR :

LHLD

SPHLU

JIMP

B,H
C,L
VARTAB
TEMP
MAKHOL

OMERR

H, BINADR

8, 09060
LLDIRSB
BINADR

B8
LOIRSB
H
BINTAB
H

A,101200008

TEMP

SETNAM
LNKFIL

H, Q022H
ERRIMP

MYSTACK

RETURN

; Out of memory error

OMERR :
OIMP

MYFILE:
DB

MYBIPA:
DW

RETURN
"SAMPLE"

DAB20OH

-

wa

-l

Where file is created

Save 1t for future use

Make room fTor control information
and machine code program

If out of memory was debachad

Copy control information into RAM
file. Note that control
information

mist be stay btogeither

Do copy them

Where machine code program
resides

Pick up length of the program
Copy the program into RAM file

Reset BINTAB

Recall address of directory slot
This is file attribute code for
machine code file

temp hold location in RAM file
where machine code program is
saved (copied) :

Set up directory
Fix up directory structure

All done
Reset error trapping

Error trapping code. Cortrol
comes here when directory is tTull
at SCNEMP call.

Reset stack pointer

Put your own error handling code
here

Put your own error handling code
here

File name

Address of machine code program
to be saved

oW @8aH Its length

DW QAQQDH ;i Execute address
MYSTACK :
DS azD ;5 Stack pointer value is stored
here
; to reset it
3 in case of error
TEMP :

0s @z2D Temporary storage

-

CHAPTER 3 Loading a Machine Code File

This chapter describes the procedure used to load a machine
code program file into memory. The machine code program cannot b
executed in the internal RAM. It should be loaded into memory at
exactly same location as the program was saved as the RAM.

3.1 Machine Language Program Load Routine

NAME RL.OADM

ADDRESS 28BBH (10@427D)

ENTRY File name should be set up in
FILNAM

EXIT None

REGISTERS ALTERED (allellcl{DlLE]

DESCRIPTION

RLOADM is used to load a machine code program file
(RAM file) into memory at the location where the
program was located when saved. If the specified
file was not found,or.an out of memory error
occurred, the control is transferred to BASIC’s ROM
Error routine. ’

3.2 Procedure to Load a Machine Code Program

1. Set up File Name

[FILNAM] (=== 18t character in file name
[FILNAM+5S] {(-—- 6th character in file name
[FILNAM+6] (== "C"
(FILNAM+7] {mw= "0O"
[FILNAM+8]) - "

2. Load Machine Language Program File

Once the TfTile name 1is set up, You can use the RKRULOADM
routine to load the machine code program file.

CALL RLOADM

3. Execute The Program (optiocnal)
If the execute address is non zero, the program is ex-
ecutable. Execute the program when necessary.
3.3 Sample Program

; Load the machine language file whose name is "SAMPLE.CO".

; If execution

RETURN :

ERROR:

FLILNF:

LXI

DAD
SHLD
XTI
SHLD

LXI
LXI
LXI
CALL
LXI
MVL
INX
MVI
INX
MVI
calL.L

LHLD

MOV
ORA

SHLD
CNZ

LXT
SHLD
RET

LHLD
SPHL
MOV
CPI
JZ

found” error

MYFILE:

JIMPT:

MYSTACK :

JIMP

DB

DB
oW

start address is

H, 2020H

SP

MYSTACK
H, ERROR
ERRIMP

H,MYFILE
D, FILNAM
B, 006D
LOIRSB

H, FILNAM+6

M, "c"
H
M,"0"
H
M, "
RLOADM

BINEXE

A, H
L

IMPT+1
IMPT

H, 2000H
ERRIMP
MYSTACK
A,E

@70
OMERR

RETURN
"SAMPLE"

QC3H
2020H

e ws w3

we

(13

-

set, start execution.

get current stack poilnter value
and save it preparing in case o
error

Enable error trapping

Force control to come my ervor
handler

Set up file name to FILNAM

And extension

Do load machine the machine code
program file into it’s real
address

Get execution address of the fila
(program)

See if it is zero

Zero indicates the program is ot
executable :

Assume executable

"If execution address is given

(nonzero), start execution
All done
Disable error trapping

Error trapping code

reset stack pointer

Check error code

Is this "Qut of memory" error
Yes -

; Otherwise should be “File not

Put your own error handler here

Name of the file to be load

Jump instruction

Where to jump. This is filled
with

execution address of the loaded
program.

CHAPTER 4 SUBROUTINE FOR LOADING AND SAVING

4.1 SRCCOM

. NAME SRCCOM
ADDRESS 2272H (8818D)
ENTRY File name should be set up in
FILNAM
EXIT Same as SCRNAM
REGISTERS ALTERED All
DESCRIPTION
The SRCCOM .searches the diﬁeotory for a".co”
file. The name of the file to be ssarched Tor
should be already setup in FILNAM.
4.2 SCNEMP
NAME SCNEMP
ADDRESS 22D3H (8915D)
ENTRY None
EXIT [(HL] Address of empty directory
REGISTERS ALTERED (al,[B],[c],[H],[L]
DESCRIPTION

SCNEMP is used to search the directory for an
empty slot. If an empty directory slot does not
exist,control is transferred to BASIC's ROM Error
routine. Therefore the user’s program must be take
care of this error.

4.3 LDIRSB

NAME LDIRSB

ADDRESS 6C78H (27768D)

ENTRY [HL] Source address
[DE] Destination address
[Bc] Length

EXIT None

REGISTERS ALTERED All

DESCRIPTION

Refer ~ to the chapter "Description of the ROM

routines in the PC-8300A" for details on the
LDIRSB routine.

4.4 SETNAM
NAME SETNAM
ADDRESS 2435H (926%0D)

4.5

ENTRY : [FILNAM] File name

[(Aal] Directory flag
{(DE] Top address of file
(HL] Address of directory
EXIT None
REGISTERS ALTERED (alIBICHILIL]

DESCRIPTION
SETNAM is used to put a filename and athtributes
{(directory flag) into a slot in directory. The
slot is searched for by the SCNEMP call.

MAKHOL.
NAME MAKHOL
ADDRESS 6CQBAH (27658D)
ENTRY [HL] Start address
[B8C] Length
EXIT Carry 1 if out of memory
REGISTERS ALTERED [(al,[D],[E]
DESCRIPTION

The MAKHOL routine is used to open a "hole" in the
RAM file and change a few pointers related to
RAM files. The purpose of the MAKHOL 1is to
allocate: room 1in the RAM file to store the
machine code program. :

Variables

1. BINADD FOCoH (63936D)
Location of the machine language program to be saved,
or location where the machine code program is loaded.

2. BINLEN FoC2H (63938D)
l.Length of the machine language program to be saved or
loaded, set by RLOADM atter the program was loaded.

3. BINEXE FOC4H (63940D)
Execution address of the machine program, Also set by
RLOADM.

4. FILNAM FB78H (64376D)

The filename 1is stored here.FILNAM is 9 bytes long,

the first 6 bytes are used to store the body of the
filename, and the rest are for extension.If the length

of the body and/or extension is less than the maximum,
the space character (20H) should be used.

‘5. VARTAB FA8BH (64139D) :)

Pointer to the start of the simple variable space.
The location pointed to by VARTAB becomes the location
where the RAM file for machine code program is created.

6. BINTAB FAE3H (64227D)
Pointer to the lowest address of the machine code
program file area.

PC-8300A MISCELLANEOUS INFORMATION

CHAPTER 1. Tape Formats
1.1 ".8A" file
1.2 ".Cc0o" file
1.3 ".DO" file
1.4 Notes
CHAPTER 2. 2nd ROM Information
2.1 1ID of the 2ND ROM -
2.21 Procedure for using the 2nd ROM
2.2 Method to use 1st ROM entry from 2rnd ROM
2.3 Assignment of the Interruphts
2.4 Routine for Using the 2ND ROM
2.5 Sequences in the 2nd ROM
2.6 Sample Code
2.7 Variables used in Sample Rowutine

CHAPTER 3 sSummary

CHAPTER 1 TAPE FORMAT

1.1 "L.BAY file
o e e o e e e e o e e o e e e e e R e L e e
ICarrier ! Space !Carrier ! | [! ! ! ! ! !
! ! ! L LI ! ! ! { !
! 64 sec! 1 sec | 3 gsec ! ! o ! ! ! H ! |
o e e e e e s e e T e o e e e s e e e e e e o o e e e e e o e e o e e e o
1o Header -—————e——w—-— Y1{(- 10 times Q3D ~)!{~— File nama —-->!
(ID of :BA file)
———————— e e e e s e e e s e o o o o e e e e e o e 0 o e
Carrier ! L {Carrier |
! Body of BASIC text ! ! ! !

2 sec ! [N I .08 sec!

———————— e o e e 2 e o o e S e o e e e e e Sttt e v o e e e e

The first carrier in the header causes the motor to wailt
that the cassette will rotate smoothly. The following
space and carrier are wused for synchronizing the code.

The body of the filename should be less than or eaual to 6
characters long. If it is less than & characters long, the
excess should be packed with rnulls (@8@D). The body of the BASIC
text contains the intermediate codes from the top, pointed . to
by TXTTAB or the address field in the directory to triple
PAD. (ie: end mark of BASIC text).

e e e e s o o e e e e = e s o e e o e o e e e o e s o e e o e . i . e e o e s e e e e e e +
! ! ! ! ! ! ! ! ! Start address ! LLength of !
! Header | DOH ! ! ! ! ! ! I of binary data ! binary data!l
! ! O (2 bytes) ! (2 bytes) !
A e e e o e e e e e e e e e o o e e e s e o e = s s o i e o i o o e e e o e e +

t{-- File name -->!

e e e it D e e e e e e e +
lExecution start | ! ! | | Check o P Carrier |
! address L= b b sum L - !
! (2 bytes) Vol 1 (1 byte) L 11 .28 sec!
e e e e Rt e e L s o e o o e e e +-
(e >! 1 (=20 times(@0H)-->!

Copy of 4 .bytes
from BINADR+2

Fm——————— - Fomm e — fm—————— Rt R et LT o e +—

! ! ! Body of | Check ! ! ! tCarrier
! Header ! 8DH ! machine ! sum v ! (... b !

! ! ! codes ! Loy ' Ll .08 se
e e e e o e e e o o e o e e e e e e o o o e e e o o o e e Rt e it +—

1'(--20 times (Q@H)--)>!

The header is the same as for the ".BA" The wvalue DOH after
the header is the ID for a ".C0" Tile, and 8DH is the 10 of
the data block.

The body of the file name should be less than or squal to 6
characters long. If it 1is less than & characters long, the rest
should be padded with spaces, 20H.

The checksum after the execution start address is a check
sum of the file name, start address of binary data, length of
binary data, execution start address and mnext the 4bytes. The
rext checksum is for the body of the machine codes. This checksum
is the sum’s complement of 2.

! ! ! ! ¢ ! ! ! !Copy of 1@ bytes from BLINAOR !

! ! L L (This data is ignored) !
o e e o e o e e e o o e e e e e e e e e e s e e o i i e e -
1{~= File name -->!

e o e e e e i e e e et e e e e e o e e e + -

! Check ! !} ! 1Carrier !

Posum b b e L !

t(1byte)! ! : 1 ! .28 sec!
e e o o e e e e s et e e e e o e o e + -

1{(~ 20 times BOH ->!

o e e e e o e o o e s e e e o e e e e o e e e o e e e e e o e e o o e + -
! ! ! Body of ! Check ! ! U 1Carrier
! Header ! 8DH ! ASCII text ! sum e o !
! _ ! ! t(lbyte)! ! 11 .08
o o e o e e o o o e e o e o e e e e e e o o o e e e e e e o R it e -

The header is the same as the ".BA" file. The value SCH
after the header is the ID of a ".D0" file, and 8DH is the 1D of
the data block.

The body of filename should be less than or eaual to 6
characters long. If it is less than 6 characters long, the rest
should be padded with spaces, 20H. The body of the ASCII text is
ASCII data from the top, pointed to by the address field
in the directory to 1AH (ie: terminator of ASCII file).

The first check sum is a check sum of the fTilename and the
next 1@ bytes. The next check sum is of the body of the ASCII
data. The checksum is the sum’s complement of 2.

1.4 Notes

The carrier 1is a high freauency sound, and the saspace is a
low Trequency sound.

The RBasic Input/Output Routines for cassette are written
in Chapter XX, "Description of the ROM routines in the PC-8300".
For further information please refer to Chapter XX, "Description
ot
machine code file handling routines in PC-8388", and Chapter
"Internal structure of PC-8300 Tile system”.

XX,

CHAPTER 2 INFORMATION ON THE 2ND ROM

Before storing programs in the second ROM, there are a lot
of matters which should be attended to and stored in the second
ROM, such as the interrupt jump tables and the power on/power OFF
sequences. 0One has to implement these tables smocthly, otherwise
the PC-8300A can run away with the ROM bank switching. The fol-
lowing chapter contains the information needed to wtilize the
second ROM bank.

2.1 ID of the 2nd ROM

Refore using the second ROM, one must write the following
information into the second ROM’s reserved memory ar=a. The
reserved area is located from 0000H to 474 (71D). This area is
used for the second ROM’s starting Jjump instruction and ID code,
and the file name for the second ROM. The file name is displayved
like one of the RAM files on the MENU screen by the first ROM,
ROM #@. The following illustration explains the special reserved
area in the second ROM.

Address

Q022+ JMP START ; The execution starts here
_ L : 4 ;i Wwhen 2nd ROM is selected

R0Q01H - ; start address low ’

@202H ; start address high

Q244 RET ; Non-maskable interrupt

QO2CH RET ; Barcode reader interrupth

PO34H RET ; UART interrupt

QO3CH RET ;3 Interval timer interrupt

PB3FH RET ; Reserved for RST interrupt

Q040H DB -

PQ41H 8" s ID code for the 2nd ROM

Qa42H 0B " 2NDROM" ; Name of 2nd ROM

QQ4.3H .. ; Indicates name in menu

QQ44H . e ; display of RAM bank 1

P47H . en H

P48H START : ; 2nd ROM’s code

If this data is implemented correctly, the name, "2NDROM",

will appear on the 1st ROM’s menu screen. TherefTore it is easy to
switch to the 2nd ROM and execute the programs. To start the
programs in the 2nd ROM from the menu mode of ROM #0, move the
cursor to the 2nd ROM’s file name on the screen and press return.
The system will then fall into the 2nd ROM programs.

2.2 Method to use 1st ROM entry from 2nd ROM

It one wants to use the routines in the 1st ROM from the 2nd

ROM, one first has to create a special routine in a higher memory
location of RAM (8Q00H~-FFFFH) and implement it. That roubine will
switch the ROM bank uwusing the bank switching method, arnd call the
routine in the 1lst ROM. It is very important thalb the interrupht:s
be disabled before the ROM bank is changed. The following sec-—
tions explain that one has to change the hook table fTor the Power
dowrnt interrupt that was changed by the 2nd ROM to restart b©he
current process in the 2nd ROM program at the next power on. With
the hook table for the 2nd ROM, the power down 1in ROM #0 will
cawuse a fatal error. The Power-off interrupht can not
prohibited. The contents of the routine which will be cralled must
also be considered, because some routines in the first ROM may
enable the interrupts 1in some part of their code, even 1if you
disable the interrupts just before switching ROM banks. Theretore
all of the values in the hook table should be changed just before
calling the ROM bank switching routine.

The following program is a sample program which uses the 1st
ROM entry points from the 2nd ROM.

N

.21 Sample Program

3 This program will enable one to use the 1lst ROM entry from
; the second ROM. 3ome routines in the l1lst ROM might enable
; interrupts, so all of the interrupts in the hook table

; should be replaced with a RET code. And they should be

; restored after one is done calling the 1st ROM

;5 Entry lst ROM entry address

; Exit for return condition of the 1st ROM

; (({ BYSTEM define label >>)>
BNKCRL. EQU BA1H ;3 Bank control port
STATUS EQU AQH : ; Bank status port

; << Main Routine »>>)»

ORG 80001 ; Routine must be betweern
3 8000H and FFFFH
ROM1ST: SHLD WORKH ; Save register HL
: LXI H, RET2ND ; Return address from 1st ROM
PUSH H ; Push stack top
LHL.D ENTRY ; 1st ROM entry address
PUSH H ; Push stack top
LHLD WORKH ; Restore HL
PUSH PsSW ; Save all registers:s
DI ; Disable interrupts
IN STATUS - ; Get current bank status
ANI 111111128 '§ Switch 1st ROM data setup
ouT BNKCRL ; Bank select
5 Now QQQQH~7FFFH are 1st ROM
EI ; Enable interrupt:s
POP PsSW 3
RET 3 Jump lst ROM entry
;3 ({{(Return from 1lst RCOM >)>> :
RET2ND ;
PUSH PsSW ; Save all registers
IN * STATUS ; Get current bank status
ORI 2000220018 ;3 Switch 2nd ROM data setup
ouT BNKCRL ; Bank select
5 Now Q0@QQH-7FFFH
PoP PSW 3
RET 3
;3 (L SYSTEM Work Area >)>)>
ENTRY: DW Q0a0H ; 1lst ROM entry address
WORKH 1 DW ?022H ; HL. register saving area
END
Note:

At the first power on after setting the 2nd ROM, the PC-
8300A must be cold started (hold down the shift key, the ctrl
key, and the stop key, and press the reset button ornn the rear of
the unit). Therefore all of the data which was stored in the
memory before setting of 2nd ROM will be destroyed. R
2.3 Assignment of interrupts

The main purpose of the interrupts is smooth processing in

the Power O0Off Trap, reading data from the Bar-Code reader, com-
municating through the UART (RS-232C¢) and using the Interwval
Timer. The interrupts are located at the Zero Page Area.
The interrupts of the PC-8300 are assigned as follows.

The Interval timer interrupt has the highest priority, and
the UART is second. The lowest priority interrupt is used for the
Barcode reader. The Interval timer has the highest priority
to be able to scan the keyboard and to count the auto-power off
counter Tor saving the battery power. The PC-8300A’s autoocwer
off function is executed after 10 minutes has past since the last
key stroke was detected. This interval can be set by the "POWER"
command in BASIC. The interval timer 1is used to count this
period.

The interrupt table is located in the zero page area.

" — . o " o " ——" > " ot > - > D > " — o D W S Ve Ve w0 i et Vowt v o e o i s e W W\ s o o o S e e st

: POWER OFF TRAP ! NMI ' B024H (36D !
' BARCODE READER ! RST 5.5 ! ee2cH (44D)
, UART ! RST 6.5 I @034H (52D) |
; INTERVAL TIMER ! RST 7.5 ! @@3CcH (568D) :

e - o o . ——- 2005 " Tore " o o S000 oo 0O e s ae i e W eme W ans Wt i P s o it B WO A it Mot o Mt o T ot e A0S s

The interrupt'hodk table is in the RAM area.

F386H (62342D) Power On Sequence

F389H (62345D) Barcode Reader Input Segquence

F38CH (62348D) UART Input Sequence

F38FH (62351D) Timer Sequence and Key 3canning Sequence

F392H (62354D) Power Failure Sequence

1. TRAP (NMI) Power off trap © 24H (360)
This interrupt is non-maskable. When the power switch is
turned off, this interrupt occurs. The following ssquence 55
the algorithm of this interrupt.

Disable the interrupt

2: Call the hook table

3: Resef the key wait counter
4: Cancel the time counter
5:
6

=

Output data to the auto power off port
HALT

The bit assignment for the Auto power off port is as
follows.

PORT ADDRESS BaH [ouT] (186D)
81C55 port 8

Bit 7 RTS output
Bit & DTR ocutput
Bit 5 BELL

Q: Ring Bell
1: Stop Bell

Bit 4 - Auto Power Off
@: Off
1: On
Bit 3 DCD/RD select
Bit 2 Melody Control
@: On
1: Off
Bit 1 LCD block select
Bit @ LCD block select
2. RST 5.5 Barcode reader 2CH (440D)
This interrupt is using RST 5.5. If one does not use the

barcode reader program, this interrupt should RETURN.

(ADDRESS F389H (62345D) with Disable Interrupt)

3. RST 6.5 UART 341 (520)
(ADDRESS 6F@0H (281600) with Disable Interrupt)
This interrupt is using R3ST 6.5, it 1is caused by thne UARY
(the Serial communication device 64@2). This interrupt oc-

curs when the data in the 6402 receive buffer is avaijlable.

The algorithm of this interrupt is shown below.

1: Disable the interrupt
2: Call hook
3: Read data from the 6402
4: Read error status from the 6402
5: Xon/Xoff control check
6: SI/SO control check
7: Return to previous process

PORT ADDRESS D8H (216D) [0oUT]

(re232c Command and status Port)

Bit 7: Not used
Bit 6: Not used
Bit 5: " Not Used
Bit 4: Character length select #2
Bit 3: Character: length select #1
Bit 2: Parity inhibit

"@: Parity generation check
1: Parity generation check, inhibit
Bit 1: Even parity enable
@: Odd parity
1: Even parity
Bit @: Stop bit select
@: Stop bit 1 bit
1: Stop bit 1.5 bit
" in case Data Length is §
1: Stop bit 2 bit
in case Data lLength is not 5

PORT ADDRESS Ca8H (2000) [ouT}
UART data I/0 port (6402 Data Register)

Bit 7 Data #7
Bit 6 Data #6
Bit 5 Data #5
Bit 4 Data #4
Bit 3 Data #3
Bit 2 Data #2 .
Bit 1 Data #1
Bit © Data #0
4&. RST 7.8 Interval timer 3cH (6@D)

This interrupt is using RST 7.5. The Interval Timer in-

terrupt (Timer device 199@) is also used fTor the key BCar
rning.

In the system’s initialization, the interval timer which is
controlled by the 19$%0, is set up for 4m second mode. Tha
port for the 1392 is illustrated below.

PORT ADDRESS A 89+ (1850) [0UT]
Calendar clock (199@) control port
Printer strobe, Keyboard strobe, LCO Chip select, and
Clock Data

3it 7 Not used

Bit 6 Not used

Bit 5 Not used

Bit 4 Data output

Bit 3 Shift clock

Bit 2 Command output #2

Bit 1 Command output #1

Bit © Command output #@

Command #2 Command #1 Command #@
1 %] @ timing 64
1 ? 1 timing 25
1 1 @ timing 20
1 1 1 TES de

In the initialization routine, the command is set up as @05H,
which means 4m second interval.

The following step is the algorithm for the interval tTimer
sequance.

1: Disable the interrupt

2: Call hook table

3: Mask RST 7.5,RST 5.5

4: Reverse cursor character for cursor blink
5: Key matrix scanning

6: Return to the interrupted process

2.4 Some routine for using 2nd ROM

We prepare some routines in order to use 2nd ROM. When you
LUse the following routine with the 2nd ROM, the PC-8300 perfor —
Aas Tfollows. .

i Menu mode

of 1st ROM

o ————— T T T T ——— +
| (== Select 2nd ROM h
v X
RN ——————————— 2nd ROM —===—= T T —— +
\ i)
: \4 :
T — + L T T PP —
P init i ' return X
| b ——————— e e e + A e e e e e +
\ \ R
I]
i v B)
et o e e e e e o e e +
. Main routine of 2nd ROM
1 e o e s e e e e e e o e S o o S T S o e S 2t 2 o S ot e g o e e o b
| '{=Turn off the power switch B
: \%4 1I
ittt R + e o o o e e o e +
I 1 PWFAIL : 3 PWON
| e —————— o e e e +
\ \ -
]]
: v ‘
o i o i e S — e e s s 2t 20 S i e i e e e r
X -
]
H Turn on the power switch - —--> |
T - T et anana et T +
i Power off
o s s 2 i s s i i o e S — e s s e e e +

2.5 SEQUENCES IN THE 2ND ROM

1. INIT

INIT sets up the SP (Stack Pointer), the power on trap
Aand other interrupt routines., Then 1t copies bLthe
bookkeeping area and the system area. Alzo zome
peripherals will be initialized by this routine.

2. RETURN TGO MENU -

RETURN selects the standard RAM, RAM #0 and resets the
power-off trap. It then jumps to the lst ROM’3 menu
mode.

3. PWFAIL (Power Down)

When the power is turned off,the control is transferecd
to the routine. One must save all registers and
circumstances which should be saved in the stack. The
stack pointer is the most important register Lo resume
the current processing on the next power-on.

The RAM bank number is always stored in TAM #0.
power on, the 1st ROM and RAM #0Q are selected automati-
cally. The bank switching procedure will be called in
the Power on sequence, if the number of the RAM bank
was not identical to RAM #0. Affter changing the RAM
bank, all registers will be restored and the pending
procedure will be resumed, therefore in the stack, the
address of the process which was abandoned by the Power
down trap should be stored.

In addition, in order to resume the abandoned process
with the 2nd ROM, one has to do a special power
on/power off sequence. In the power off trap, one
should set the start routine of the special power on
sequence Which switches the ROM bank. It is recommended
that one uses the hook, F38FH. Usuwally, tihe “"Jump To
Power Fail Seauence” command is stored here. In the 2nd
ROM, however, one has to rewrite this hook table and
call the special power. down routine here. 1In this
routine, the address of the special power on routine on
the stack. In this case, the following information
should be stacked before the "HLT" command is execubted.

- e o —— v s — o —_— - . oot o0 o T o ase S Vo oy T e

- o o o . > " " > S v " — — V" ————

! starting address of '
! the ROM switching \
' routine |

- - —— —_ o . ot o s o o gy oS it i

]
' V== [BTAKSY]

- — s o e oy o —" ——— — - — T — ot s o

[5TAKSV] keeps the Stack Pointers value at "HLT"

4. PWON

Note

At initial power on, the initialization routirne in ROM
#0 checks the RAM bank number in B8ANK (F3DBH) when
power off was executed. When power off occurs in the
non-standard RAM bank, the RAM bank-switching routine
is called and switched. Then, the register contents
will be restored. If the address of the process which
should be resumed was stacked, the address will be
picked up and executed. When the power down wa:
detected in ROM #1, the address of the special ROM
switching routine ought to be stacked above the address
of the process to be resumed. Therefore, after switch-
ing the ROM, the abandoned process will be resumed.

The following routine needs an internal work area. So,
one has to.secure any memory area by BASIC’s clear
command, before 2nd ROM start. The HINIT in PWON
initializes only interrupt, 8155, the interval timer
and LCD. So, if one wants to use other hardware, please
put the initialization code in here (PWON).

2.6 SAMPLE CODE

-
L

; Sample code

BANK
ATID3SV
PWHOK
R3T55
STAKSV
AUTOIO
CAVSTK
STATUS
BNKCRL
PWPORT
FORTR
FREE

EQU
EQu
EQu
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

to use 2nd ROM

F30BH
F383H
F386H
F389H
FSAEH
scasH
FAD@H
AGH
AlH
B88H
BAH
?2???H

; Bank save area

; Power on hook table
; Rst 3.5 hook table

Bank status

Bank control

81C55 chip select
81C55 port B

3 You must set your RAM

we v we

; free portion address

; (<{ Main Routine >>>

START:

JMP

ORG

JMP

ORG
JImMP

ORG
JmMP

ORG
JIMP

ORG
0B
oB

ORG QQOoH
INIT
0024H
POWER

@@2CH
BARCOD

P034H
UART

QO3CH
TIMER.

Q040H
’AB’
* 2NDROM’

; Restart @

; Jump to initialization routine

;when 2nd ROM 'is called from
; ROM’s meru mode

; Non-maskable interrupt
; Power off trap

RST 5.5
; Barcode interrupt

-

; RST 6.5
UART interrupt

Timer interrupt

3 ID code- for 2rnd ROM
; 2nd ROM’s 1D
; Filename displayed in menu

1st

INIT:

MAIN:
; (LK Set

LHLD
SPHLU
cCaLL

CALL
JMP

up h

SAVSTK
SETTRP
HINIT

MAIN

ook)

; Set stack pointer

; Set hook for resume 2nd ROM’s
programmed other routine into RAM

; Hardware

initialization

; Jump your main routine

;. Set up the hook table for the 2nd ROM

SETTRP:

3 [DE] <~

COPY:

; The following code will be copied into RAM

; portion

MVI
ouT
LXI
LXI
MVI
CALL
LXI
LXI
LXI
caLL
RET

(HL]
MOV
STAX
INX
INX
OCR

INZ
RET

tfor

; these parts

DTBL

BANKI :
TBLEND

EQU
MVI
ouT
JMP
0s

EQU

A, Q00002018
BNKCRL

H,DTBL

D, PWHOK

B, TBLEND-DTBL
COPY

H, TBLHOK

D, FREE

B, HOKE-TBLHOK
COPY

QuwWoIx

OPY

Select standard RAM

; Select!

; Set some codes into

RAM

;3 Tor power on seqguiences

return code table

; Free area of RAM portion

Set length

; Copy [B] bytes
; Source:[HL]
; Destination:[DE]

re-power on sequences
are interrupt hook table

3

A, 000000018
BNKCRL

PWON

1

3

This code will be copied into

RAM

; The following code will be copied
;3 into the RAM portion Tor return to 13t ROM

TBLHOK EQU %

RETS38:
XRA A ; Clear A
OUT BNKCRL ; Seleck 1st ROM and
3 standard RAM
JMP @ ; Return!
HOKE EQU 3
RETURN::
MVI A,000000018B ;7 Select standard RAM
OUT BNKCRI. 5
MVI A, Q00000008R 3
STA BANK ;
LXI H,Q000H . ; Reset ATIDSV
SHLD ATIDOSV 5
LXI H,RTBL ; Rewrite code table
LXI D, PWHOK ; Interrupt hook table sei
LXI B,RTBLE-~-RTBL ; Set length
CALL COPY
IJMP RETSB ; Return to 1lst ROM’S menu

H . .
; The following code will be copied’
; into the standard RAM portion

RTBL EQU %
RET ;3 Power on hook
NOP
NOP
EIX 3 RST 5.5 hook
RET
NOP

RTBLE EQU 3

(<< POWER ON >>>

PWON :)
CALL HINIT ; Initialization of hardware
LOA BANKI-DTBL ; Select old RAM bank
OUT BNKCRL

LHLD STAKSV Restore stack pointer

wa ws W

SPHL
; If you do not want to resume, put
; that any code for

POP PSW ; Restore all register

POP B :

POFP D 3

POP H ;

RET ; Resume old program

PWFAIL:

PUSH PsSW ;
IN PWPORT ;
ANA A H
IM NTPWFL H
POP PSW 5
DI H
PUSH H H
PUSH D ;
PUSH 8 H
PUSH PSW :
LXI H,2000H 3
DAD SP ;
SHLD STAKSY ;
MVI A,QFFH H
STA PWRINT H
IN STATUS H
.3
H
MOV B,A H
MVI A,Q00000018 ;
OUT BNKCRL H
MOV A,B. ;
STA BANKI-DTBL H
MVI A,Q020020218 ;
OUT BNKCRL 3
MVI A,Q0H H
STA BANK ;
LXI H,AUTOID 3
SHL.D ATIDSV 3
IN PORTB 5
ORI 000120008 ;
OUT PORTB H
HLT H
NTPWFL :
POP PSW H
RET 5
; << BARCODE READER INTERRUPT >>)
RET H

BARCOD:
; (<< UART INTERRUPT)>>>

UART : RET

H

5 (<< INTERVAL TIMER INTERRUPT >3
TIMER:

wa

LDA PWRINT 5
OCR A H
STA PWRINT H
RET

; (<< SYSTEM WORK AREA))>)

PWRINT: DB

@FFH ;

END

Read power down port:
Check

No power down

Disable interrupt
Save all registers

Save stack

Reset interval timetr

Set up for next power on
Save current RAM bank status.

when power on resume remember
this and select

RAM bank
Save it

Select standard RAM

Select!
Resave old stabus

Select RAM bank 1

Set; up to come back to 2nd ROM

; when next power o©on

Power off

Return soon

Return soon

Pick up timer value
Decrement!
Save it

Timer counter n * 1/256H:z

Variables Used in this Sample Routine

ATIOSY F383H (623380)
To resume operation or not
(Address to jump to Resume)

BANK F3DBH (62427D)
The Bank status is saved here.
(Current Bank selected)

PWRHOK F386H (623420D)
Power on hook
(RST @@ Hook)

ROMSEL FE44H (65092D)
Holds the value output to IOCNT (System Control Port)
(Copy of Port 090 IOCNT)

SAVSTK FADOH (64208D)
User can use this area (above [SAVSTK]) in the 2rnd ROM
as the stack area (Save for SP used by Resume)

STAKSV FOAEH (63918D) .
Stack pointer save area during auto power off state

3.0 SUMMARY

To make a 2nd ROM program, one should take care of the following
manner.

A INTERRUPT VECTOR

If one does not want to use interrupts, the entire interrupt
table should be set with "RET" code. It is suggested that one use
the interval timer interrupt, because of saving the battery power
by using the auto power off function. The counter for this auto
power off function is counted by this interval timer interrupt.
If not used, battery consumption may be higher than normal.

B. BANK of RAM

Do riot switch the ROM bank when the PC, Program Counter, points
to a routine in ROM. This is because this bank switching will
cause a fatal problem for the system, the worst case being, all
of the files stored in RAM will be lost. Care should also be
taken in the stack area. :

C. - PC-8300A BOOKKEEPING AREA

The bookkeeping area is very important for this system, so never
change that area without careful consideration. For more informa-
tion see Chapter XX, "Bookkeeping Area”.

D. POWER ON/OFF SEQUENCE

It is recommended that one use the power off interrupt to detect
the power down, using the real time interrupt service to poll the
power down signal.

If one is using the 1st ROM entry from the 2nd ROM, pleass take
care of the following points. All routines rewrite work area
sometimes, so if using the 1lst ROM entry from the 2nd ROM without
understanding the routine’s internal specification, the system
might crash. In addition, pay special attention to the interrupts
and stack area. ’

CHAPTER

CHAPTER

CHAPTER

CHAPTER
CHAPTER
CHAPTER
CHAPTER

CHAPTER

INTERNAL STRUCTURE OF THE PC-8300A RAM FILE SYSTEM

NN PP PRee

W W W

AUNP

WN P

B

(6

)
NP e

Directory

Directory configuration

Directory configuration per entry
Bit assignment of directory flag
Value of address field

File structure

File structure of machine language file
File structure of ASCII file

File Storage

Bookkeeping Area

Part I of the Bookkeeping Area
Variables For The RAM File Handling and Basic
Memory Map

Description of the Variables

Part II of the Bookkeeping Area

Part III of the Bookkeeping Area

The File Control Block (FCB)

Notes

Sample Program

CHAPTER 1 DIRECTORY

1.1 Directory Configuration

The directory area 1is allocated in the middle of the
bookkeeping area. The top address is F84FH. A non-
registered Basic program 1is a program which has not
been saved.

F84FH (63567D) BASIC Directory for program in ROM

F85aH (63578D) TEXT Directory for program in ROM

F865H (63589D) TELCOM Directory for program in ROM

F870H(636000) NULDIR Directory for non-registeraqd
BASIC prograin

Fa78H (63611D) SCRDIR Directory for 3CRAF (used by
EDIT and TEXT)

FageH (63622D) EDTDIR Directory for temporary used
by EDIT

F891H (63633D) USRDIR . Directory for user-defined

files

. (21 directories total)

FS78H (63864D) FFH Directory search stopper

FFFFH =~ ———mmmmmm—eemmmme e (===
(65535D) '

FO77H ——mmmmmmmmmm— e
(63863D) Directory

! 1 Bookkeeping
H Area H
] 1
] 1]

Area

FB4FH = w e
(63567D) -

F380H = —wemece—cc———— e (===
(62336D)

1.2 Directory configuration per entry
The first six slots in the directory area are
initialized by the INIT routine at Cold Start.

Directory flag (1 byte)
Address field (2 bytes)

File name (8 bytes)

The initialized values for the first six slots in the direc-
tory are shown below. The first three files are stored in ROM and
displayed on the menu screen. The next three files are used for

hidden files created in the RAM area.
appear on the menu screen.

files are described below.

D8
DW
D8
DB

og
oW
08
D8

o8
OW
o8B
o8

[8]<]
DW
[8]<]
o8B

(Initialized

191102208

Start address of
'BaASIC

2

1921192008

Start address of
"TEXT g

@

19110008

Start address of
TeELcoMm

]

These hidden files will rot

The characteristics of these hidden

data is stored in 6C8EH)

BASIC

TEXT

TELCOM

for non-registered program

100010008
o . .
.Q

PXXXXXXX?

; for Scrap file

OB
DW
(8]<]
D8

DB
DW
DB
D8

1.

for EDIT command of BASIC

3

110010008
4]
@
PYYYYYYY’®

21201220
@

%]
*2zz22222°

Bit assignment of directory flag

Bit 7?7 Master bit
Bit 6 ASCII bit
Bit 5 Binary bit .
Bit 4 File in ROM

(1 means
{1 means
(1 means
file)

(1 means

directory valid)
ASCII-TEXT file)
Mach;ne language

file is in ROM)

Bit 3 Hidden file
Bit 2 IPL

Bit 1 RAM file open
Bit © Internal use

1.4 Value of address field
BASIC text

ASCII text
Nachine language
Machine language in ROM

(1 means file is hidden)
{1 means IPL set)

flag
(Always set to @
normally]}

Address which TXTTAB must be
set

Beginning address of fille
Beginning address of file
Entry address

The TXTTAB8 in Basic shows the lowest byte of the Tfile, tiw
first link pointer in the Basic program file.

CHAPTER 2

2.

2.

2.

i

2

3

File

File

File

File Structure

Structure of Machine Language File
Start address 2 bytes
L.ength 2 bytes
Execution address 2 bytes

Machine code program

Structure of A3SCII File
ASCII text
1AH (End of TEXT) 1 byte

Storage -

The files in the internal RAM are stored in a fixed or-
der. The Basic files ("BA") are stored at the bottom ofF
the RAM area, near 8000H. When a new Basic program is
stored is will be placed at the top location of tha
Basic files allocated space (at the next lowest address
after the Document files). The "DO" ftiles (ASCII files
with the suffix ".D0O") are allocated above the BA
files. Machine lLanguage files ("C0" files) are saved

" above the DO files, near FFFFH. The following illustra-

tion shows the order in which ftiles are saved.

FFFFH =~ —————e ———————— '

: ‘Bookkeeping

Area

'Free Area and - -
! Data Area d
! Machine |
! Language i
! Area (CO)|
i ASCII \
! Document 1
1 Area (DO) |
i Non-registered H
H Program !

. ——— — — S — - —— - - > -

A new BA file is created above the old BA files. A new DO file is
stored below the lowest DO file, Jjust above tne B8A fTiles. A new
CO file is made Jjust above the CO files, just below the address
which is pointed to by VARTAB. The non-registered BA file is
created between the BA files and the DO files.

CHAPTER 3

BOOKKEEPING AREA

The bookkeeping area is located at the top of the RAM area.

The area is divided into 3 parts. The first part, the lowest part
from F380H to FBBFH, includes the pointers and flags for RAM file
handling. Also many of the Basic interpreter’s flags, pointers
and temporary data is stored here. The Directory Area is lncluded
here.

The second part, FBCOH to FE3FH, is used for the line buffer
of the LLCD display. Basic also uses this area in the 3Screen
Editor function.The concept of this line buffer is different from
the VRAM in traditional desk top personal computers. Only the
character codes are stored in this buffer. There is no attribute
data. The attribute data is stored in another table (see the ex-
planation of the LCD driver).

The third part, FE4@H to FFFFH, is reserved by the BIOS. The
switches and data storage for the RS$S-232C, Key Board and other
I/0 drivers are stored here.

FFFFH e eemrcccmnme e ———
(65535D) | H
! Part III .| BIOS’s data
§ 1
1 [}
FE4GOH = —m—mmmee—meeeee
(65088D) | H o
\ Part I1 i LCD Buffer
1]
1 N]
FBCOH —~mmweccccemc————
(64320D) | .. - | Basic’s data .
| Part I i File Handling Data-
i ' i Directory
F380H = ~—ermmcwecwome—— :
(62336D)

Bookkeeping Area

PART I of the- BOOKKEEPING AREA

3.12 VARIABLES For the RAM File Handling and BRasic

Many important pointers are stored in this area for RAM fils

handling.
routines,
the standard ROM (ROM #0).
pointers point to the correct addresses.
should point to the lowest address of the DO files,
byte smaller than it should,

times.

l10.

11.

12.

When some of the pointers are

mishandled in vour

all RAM files might be deleted at the next operation of

ARYTAB FAE7H (64231D)
Pointer to the beginning of

ASCTAB FAE1H (64225D)
Pointer to the start of the

BINTAB FAE3H (64227D)
Pointer to the start of the

BOTTOM FOBOH (63920D)
Bottom address of RAM

DIRPNT F979H (63865D)
Pointer to the directory of

DIRTBL F84FH (63567D)

The bullt-in programs assume that the

So if a pointer whicn
points one

text might not invoke any D0 rfiles.
Make sure that the pointers contain the correct values at

JUREEN
&l oL

the array table
ASCII files

binary files

the current Basic program

Points to the beginning of the Basic ROM program

EDTDIR Fa886H (63622D)
Directory entry for EDIT in

FILTAB FB&3H (64355D)

Basic

Pointer to the address of the file data

FRETOP FABFH (64191D)

Top of the string free space

FSIDSV F380H (62336D)
First power on or not,
situation (ie,

HIMEM F384H (623400)
Highest memory available to
command’s 2nd parameter)

MEMSIZ FASAH (64154D)
Highest location in memory

to determine a Cold Start
address to jump to on first power up)

BASIC (ie:same as CLEAR

13.
14.
15.
16.
17.
18.
19.
é@.

21.

NULBUF FB&67H (64359D) -
Pointer to the address of file butffer #020

NULDIR F870H (63600D)
Directory entry for a non-registered Basic program

SCRDIR Fa7BH (63611D)
Directory entry for scrap file

STKTOP F459H (62553D)
Top location to use for the stack

STREND FAESH (64233D)
End of storage in use

TXTEND FA88H (64136D)
End of the current Basic program

TXTTAB F45DH (625570)
Pointer to the beginning of the Basic text

USRDIR F891H (63633D)
Directory for the user’s files. Points to the first
user directory entry.

VARTAB FAESH (6422%D) ‘
Pointer to the start of simple variable space -

. 3.11 MEMORY MAP

(BOTTOM) —~=> T e e o e s e s e e e

(BOTTOM+1) > T o o e e e e e e
FO8@H+ I .BA files

L it i e i e

(TXTTAB) ~—==)> I Current BASIC text
FASDH) S,
(TXTEND) =~ I .BA files

FA88H T e it i e i e e e i e i
{NULDIR+1)-> I Non registered BASIC
F870H+ I text
T e i e e e e e e ek
(ASCTAB) ---> I .00 files
FAE1H) e ma e
(SCRDIR+1}-> I SCRAP
F878H I Contents of Paste buf.
e

{EDTDIR+1)-> I Edit Area for Basic
F8R6H+ D
(BINTAB) —~=> I .CO files

FAE3H G
{VARTAB) —--> I Simple var.
FAESH I....... aea e aaaeaea .
(ARYTAB)——-> 1 Array data
FAE7H _ I..iu.... e e eeaa e e
{STREND) —=—-> 1 Free area
FAE9H L. e s i m e e na e naaaaa
(SP) e > - I Stack area
(STKTOP) ===)> I i eiieannnn i eeeaaan
F459H I String (Free area)
(FRETOP) ——=)> D
FABFH I String (Used area)
(MEMSIZ)---> B
FASAH I (2 Bytes)
(FILTAB)—-=) D
FB63H I File control block
(NULBUF) ===) I...iieerennonnennannnna

I
I Null Buffer
I (File #@)

L. it s i e e s e anannannan
I FCB
I (#1 -~ #n)
L. i ittt et aenannaonaanan
(HIMEM) -——=-> I User’s machine lang.
F384H I area
Y
I Disk code
L. i e e e e s e e m e e
(FSIDSV])—==> I Bookkeeping
F3802H T o o e o et e e s e e e

3.12 Descriptions of the Variables

1. ARYTAB

7.

ADDRESS FAE7H (64231D)

SIZE 2 bytes
PURPOSE Pointer to the beginning of the array
table

The Array Table is allocated just above the Variable
Table. This points to the beginning address of this Ar-
ray Table.

ASCTAB

ADDRESS FAE1H (64225D)
SIZE 2 bytes
- PURPOSE Pointer to the start of the ASCII files

This pointer points to the first byte of the first "DO"
(ASCII) file.

BINTAB

ADDRESS FAE3H (642270D)
SIZE 2 bytes
PURPOSE Pointer to the start of the Command

files
The lowest address of the first

"CO" file is kept here.

BOTTOM

ADDRESS FoBOH (63920D)
SIZE -~ - 2 bytes
PURPOSE . The bottom address of RAM

The lowest available RAM address is saved here. One can
easily know how many RAM chips have been 1nstalled in a
RAM bank by checking this pointer.

DIRPNT

DIRTBL

ADDRESS FO79H (63865D)

SIZE 2 bytes

PURPOSE Pointer to the directory of the current
Basic program.

ADDRESS F84FH (63567D)

SIZE 33 bytes

PURPOSE Directory for the programs in the ROM

The names and pointers for the programs in ROM (Basic,
Text, and Telcom) are stored in DIRTBL. If these
programs are not being used, this area may be used by
the user’s programs. This area will be kept until a
“COLD START" is invoked.

EDTDIR

ADDRESS F886M (63622D)
SIZE 11 bytes
PURPQOSE . Directory for EDIT in Basic

The EDIT command in Basic creates a temporary "DO"
file. This slot is used for this file.

8. FILTAB

ADDRESS FB63H (64355D)
SIZE 2 bytes
PURPOSE Points to the address of the file data

This pointer points to the starting address of the file
data area. The file data area consists of the FCB
address. If the "MAXFILES" command in Basic was not
executed after a "COLD START", this table has 4 bytes.
The first 2 bytes point to the NULL Tiles buffer
(NULBUF points to the same address). The second 2 bytes
point to the #1 file’s FCB address.

3. FRETOP
ADDRESS FABFH (64191D)
SIZE 2 bytes
PURPOSE The top of the free string space

The highest address (closest to FFFFH) of the Tree
string area is kept in this pointer. The lowest address
is kept by STKTOP+1.

10. FSIDSV
ADDRESS F380H (62336D)
SIZE 2 bytes
PURPOSE Check if first power on or not

If FSIDSY is not identical to FRSTID (8A4DH), the
initialization routine falls into the "COLD START"
routine. If cold start occurs, all of the data files in
the PC-8300A are cleared. The "COLD START" routine sets
FRSTID to this address after the initialization is
done. This ID value may not be changed.

1i. HIMEM

ADDRESS F384H (62340D)
SIZE 2 bytes
PURFOSE Highest memory available for Basic

This pointer holds the highest memory address available
for Basic. The area between this address and F380H is
reserved for machine language files or the user’s
special working area. No standard program will break
the data in this area except the POKE statement in

12.

13.

1l4.

1s.

Basic. The POKE statement can write to anywhere in the
RAM, so care should be taken when selecting an address
for the POKE statement to store a machine language
program or character data into the RAM area. The HIMEM
can be changed by the second parameter of the CLEAR
statement in Basic. Please refer to the PC-8330A Basic
Reference Manual for more information on the CLEAR and
POKE statements.

MEMSIZ

ADDRESS FASAH (64154D)
S1ZE 2 bytes
PURPOSE The highest location in memory

This pointer points to the top of the string space. Thn2
area between the MEMSIZ and FRETOP+1 is called "Used
String Space”, and the area between the FRETOP and
STKTOP+1 is “Free String Space".

NULBUF

ADDRESS FB67H (64359D)
SIZE 2 bytes
PURPOSE Points to the address of the file buffer

The buffer for file #0, sometimes called NULBUF, is
allocated just above the file data table, pointed to by
FILTAB. : ’

NULDIR

ADDRESS F870H (63600D)
SIZE 11 ‘bytes
PURPOSE Directory for non-registered programs

This area is kept for internal use. A non-registered
program is a Basic program which has been just typed
after selecting BASIC. This area points to the starting
address of the Basic program. Please refer to the
chapter on BASIC file handling.

SCRDIR

ADDRESS F87BH (63611D)
SIZE 11 bytes
PURPOSE Directory for the Scrap Area

The TEXT editor is capable of the following four
functions, SELECT, CUT, COPY, and PASTE. This directory
is used as a temporary file storage for the Scrap from
TEXT. This file is created when some characters are
SELECTed and COPYed or CUT (please refer to the
PC~-8300A User’s Guide for more information on these
terms). This file is kept even if one exits from TEXT,
therefore the contents can be used in other programs

16.

17.

18.

19.

20.

17.

(ie, Basic or Telcom). If one CUTs or COPYs without
first SELECTing, the starting address points to
Control-2Z, showing the Scrap file to be empty.

STKTOP
ADDRESS F459H (62553D)
SIZE 2 bytes
PURPOSE The top location to use for the stack

Initially STKTOP 1is set up by the INIT routine in ROM
#), according to the memory size to allow for 256 bytes
of string space. This value can be changed by the CLEAR
command’s first argument. The difference between MEMSIZ
and STKTOP means the total string space. The 2 byte
space between MEMSIZ and FILTAB are kept for the "vaL"
function in Basic. The "VAL" function sets "@" at the
end of the strings, after evaluating the strings. This
two byte area prevents accidental over-write of the FC8
area just above the FILTAB.

STREND
ADDRESS FAESH (64233D)
SIZE 2 bytes
PURPOSE . End of the storage in use

This pointer keeps the address just above the Array
Table. The area between this pointer and the stack
pointer can be used as the FREE area. : '

TXTEND

ADDRESS FA88H (64136D)

SIZE 2 bytes

PURPOSE The end of the Current Basic program
TXTTAB

ADDRESS F45DH (62557D)

SIZE 2 bytes

PURPOSE Pointer to the beginning of the current

Basic program :

USRDIR

ADDRESS F&891H (63633D)

SIZE 231 bytes

PURPOSE Directory for the user’s files.

This area is used for the "BA" files, "DO" files and
"CO" files which the user makes. Up to 21 files can be
registered. The end of the directory area is indicated
by FFH (Directory Search Stopper).

VARTAB
ADDRESS FAESH (64229D)
SIZE 2 bytes
PURPOSE Pointer to the simple variable space

This pointer keeps the starting address of the Variable

Table area just above the “C0" files.

CHAPTER 4 PART II of the BOOKKEEPING AREA
VRAM Area For The LCD

ADDRESS FBCOH (64448D)
SIZE 640 bytes

Part 11 of the Bookkeeping area is used for the VRAM of the
LCD {Liquid Crystal Display). In this area, data is stored as tha
ANSI character code {(refer to Appendix 4 of the PC-8300A Basic
Reference Manual). The LCD driver, installed just below the LCD
panel, receives this character code and displays it on the LCD. A
total of 320 characters (4@ X 8) can be shown on the LCC panel.at
one time. Therefore only the second 320 bytes,. from FDOBH to
FE3FH, are used fTor the VRAM. The first 320 bytes, FBDOOH to
FCFFH, are used only when the TERM mode is selected in TELCOM.
The "PREV" function key in TELCOM’s TERM mode, shows the previous
screen from TERM {please refer to the PC-8300A Users Guide for
more information).

The data 1in the VRAM appears when the LCD driver is turned
on. Please refer to Chapter XX, for information on the control
sequence for the LCD management.

CHAPTER 5% . PART III of the BOOKKEEPING AREA
Bookkeeping Area for the BIOS

ADDRESS) FE4GOH to FFFFH (65088D - 655350)
SIZE 447 bytes

This area includes the data area for the RS-232C driver, the
buffers relevant to the Keyboard driver, and the working area for
the LCD driver. Refer to Chapter XX - XX for information on how
to use the peripheral drivers and the data in this area.

CHAPTER 6 THE FILE CONTROL BLOCK (FCB)

The variable FILTAB points to the lowest address of the file

control data area. FILTAB points to the table of the starting
address of the FCB (the FCB Offset) if the file is opened.

(1)

(2)

Example FILTAB and FCB
FILTAB (FB63H) ~—m—mw——w—— > FleAH

Dump memory (in hexadecimal)

i

"16A 6E F1 77 F2

The first 2 bytes (F16EH) point to the starting address of
the FCB of #@ file (NULL buffer). The second 2 bytes (F277H)
is the top address of the FCB for file #1. These starting
addresses are called FCBOFF (FCB offset address).

The FCB area for NUL and file #1 are allocated by the
INITIALIZE routine in ROM #@. The remainder of the Offset
for the FCB area is allocated by the Basic language command
MAXFILES (refer to the PC-8300A Basic Reference Manual for
more 1nformation)

The FCB consists of 9 bytes of parameter area and 256 bytes
of buffer area except for NULBUF. NULBUF consists of only
256 bytes of buffer area. The purpose and the size of the
parameters are listed below. 3Since the FCB can support a
Floppy Disk File, there exists some meaningless parameters
for RAM files. These parameters may be used for the users
owNn purposes.

FL.MOD- Null file mode for Open

ADDRESS FCBOFF+0
SIZE 1 byte
PURPOSE

The FL.MOD is the file mode of the FCB. If this byte is
not set, this FCB 1s not used in Basic. If one obeys
the BRasic rules, yYou have to set a non-zero value here
when you open a file.

1 INPUT only
2 OUTPUT only
8 APPEND only

FL.FCA~ First cluster allocated

ADDRESS FCBOFF+1

(3)

(4)

(5)

(&)

(7)

SIZE 1 byrte —
PURPOSE

The first cluster is allocated to a file. In the RAM

file handling, this parameter has no meaning.

FL.LCA~ Last cluster accessed

ADDRESS FCBOFF+2
SIZE 1 byte
PURPQOSE

The last cluster is accessed. For the RAM file open,
this byte and the next are used for the storage of the
Directory address of that RAM file.

FL.LSA~ Last sector accessed

ADDRESS FCBOFF+3
SIZE 1 byte
PURPOSE

The last sector accessed. For the RAM file open, this
and the previous byte are used for the storage of thea
Directory address of that RAM file.

FL..DOSK~ Name of disk drive on which file is opened

a

ADDRESS FCBOFF+4 '
SIZE - 1 byte . o
PURPOSE

Disk number of the file or Device ID. The table listed
below is the Device ID table in the PC-8300A.

OEVICE NAME ID NUMBER
LCD FFH
CRT FEH
CAS FOH
COM FCH
WAND FBH
LPT FAH
RAM FoH

(The CRT and WAND dewvices are optional I/0)

FL.SLB- Size of last buffer read

ADDRESS FCBOFF+5
SIZE 1 byte
PURPQOSE

The size of the last buffer read.
FL.BPS—- Current buffer position

ADDRESS FCBOFF+6 . -
SIZE 1 byte
PURPOSE -~

The position in the buffer for both PRINT and INPUT

(8)

()

(12)

with the file #. One of the most important parameters
in the FCB.

FLL.FLLG~- Attribute flag for this file

ADDRESS FCBOFF+7
SIZE 1 byte
PURPOSE

This byte and the next byte are used for the offset
address of the RAM file which is currently opened. For
example, in the "INPUT" mode file, this offset address
is advanced by 256 bytes when the block-read command
reads 256 bytes from the file into the buffer in the
FCB. In reading or writing to the RAM file ("DO" file),
the starting address and this offset show the next byte
to be read or Wwritten.

Fl..OPS~ Output position for tabs and commas

ADDRESS FCBOFF+8
SIZE 1 byte
PURPOSE

The high byte of the offset address for the RAM file.

FL.BUF- Start of sector buffer (256 Bytes)

ADDRESS FCBOFF+9
SIZE 256 bytes
PURPOSE

Buffer for the file.

CHAPTER 7 NOTES

When manipulating RAM files without using the Basic’s ROM
routines, please note the following things, or the Tiles may be

broken.

Update the pointers (ASCTAB, BINTAB, STREND, etc.)} if
necessary.

Update the address data in the directory, if necessary.
Check for out of memory error
Set the directory correctly, when create new file.

Do not create more the 21 files!

CHAPTER 6
Sample program

Procedure to create new

.DO"

file

1. Scan empty directory

2. Check out of memory

3. Make hole where new file should be stored
4. Store ASCII text at the hole

5. Update pointers

6. Update address data in directory

7. Set up directory

; Create new ".DO"
START :
; Scan empty directory
LXI H, USRDIR H
LXI 8,0011D H
LOOR :
MOV A, M H
CPI @FFH ;
JZ FLERR H
ANI 88H 3
JZ FOUND 5
DAD B
JIJMP LOOP 3
FOUND : ,
SHLD TEMP ;

; Check out of memory error

; (ie:

new (STREND) and 200D.

; possible that to create new
LHLD STREND

'Y

XCHG
LHLD LENGTH ;
DAD D ;
LXI B,02000 ;
DAD B ;
XCHG ;
LXI H,Q000H :
DAD SP ;
MOV A,H ;
SUB D ;
JC OMERR ;
INZ OK ;
MOV A,L ;
sus E ;
JC OMERR ;

; Make hole at ASCTAB for new
: block transfer:; ".DO0" files,
rays.)

point

file that we want to create.

file without to use BASIC’s ROM routine.

Is beginning address of user’s
directory
Is length of directory

Get directory flag

Is end of directory

Yes, empty directory does not
exist

Check master bit (ie:
directory in use)
Found empty directory. Make HL to
next directory

Is the

Check next directory

Store address of empty directory

Check current SP is greéter than the wvalue that sum of
Where
file.)

SP less than that, it is not

Compute new (STREND)

add 200 to it

Compute SP and it

(ie:

".C0" files, simple var and ar-

OK:
LHLD
DCX
PUSH
XCHG
LHLD
DAD
PUSH
LHLD

STREND
H
H

LENGTH
o)
H
STREND

XCHG
LHLD
MOV
suB
MOV
MOV
SBEB
MOV
POP
POP
CALL LDDRSB
;5 Copy the ASCII text
LHLD LENGTH
Mov B8,H
MOV C,L
LHLD ASCTAB

SCTAB

O > mao

IOoOW@I>»ON PP
>

into the

XCHG
LXI H, TEXT

CALL LDIRSB
; Update pointers

NI oW M W

ME e ME W WMe W ws wWI W

Save source address

Save destination address
Compute length of memory area
that will be
transfered.
~-[ASCTAB])

(Length=[STREND]

Block transfer
hole '
Get length of new file

Get beginﬁing address where new
file should be stored

Get beginning address where
ASCII text 1is stored
Block transfer the text

H (BINTAB, VARTAB, ARYTAB, STREND)

LHLD
XCHG
LHLD
DAD

SHLD
LHLD
DAD

SHLD
LHLD
DAD

SHLD
LHLD
DAD

SHLD

LENGTH

BINTAB
D
BINTAB
VARTAB
6]
VARTAB
ARYTAB
D
ARYTAB
STREND
D
STREND

; Update pointers of ASCII file

LHLD LENGTH
XCHG
LXI H,NULDIR

LXI B8,00811D

LR TR B TR T T R T Y

ws ua BT Ws we

Get length of new file

Update BINTAB

Update VARTAB

Update ARYTAB

Update STREND

and machine language file

Get length of new file

Get beginning address of RAM
file’s directory

UFPFRaLl :

UPPR2:

UPPQA3:

3 Set up directory of new file

ENDFIL. :

FLERR:

OMERR:

MOV
CPI
Jz

ANI
CPI
Jz

CPI
INZ

INX

MOV
ADD

MOV
INX
MOV
ADC
MOV
DCX
DCX

DAD
JIMP
LHLD

MVI

MoV
INX

 XCHG

LHLD
XCHG
MoV
INX
MOV
- INX
XCHG
LXI

LXI
CALL
RET

A, M

@FFH
ENDFIL
1111092098
110000008
UrPra2
121200008
UPPO3

H

>
m

v/ >

ITXXZX>P»IZX
>

B
UPPO1

TEMP
A, 110000008

M, A
H

ASCTAB
M, E

H

M, D

H

H, FILNAM

B, 202080
LDIRSB

e NS NS W WE Wt wE W aa

-

M3 ws WM ws Wi W

Get directory flag
Is end of directory

Is ASCII file in RAM?

Is machine language file?

Yes, ASCII file or machine
language file

Update pointer of file

(ie: add length of new file to

‘old pointer)

Make HL to point next directory
Check next directory

Get address of empty directory
Is directory flag meaning ASCII
file in RAM

Set address of new file

Set file name

‘Is beginning address where file

name is stored
Is length of file name
All done

Filing limit error
Put your error handling routina

Out of memory error
Put your error handling routine

remor”

LENGTH:

FILNAM:

bW

DB

0B
0B

Ds

2006D
"SAMPLEDO"

"Hello"
1AaH

@20

' T3

Is length of ASCII text
Is file name

Contents of new ASCII file
as terminator of ASCII file

Temporary storage to save address
of empty directory

PC-8300A BASIC INPUT/QUTPUT ROM ENTRY POINTS
Keyboard Driver

LCD Driver

Printer Drivers

RAM Bank Handlers

RAM File Handlers
Physical Cassette Drivers
Physicai RS232C Drivers
Time Handlers

Sound Generator

Screen Editing

Error Handling

Miscellaneous Routines

CHARPTER 1 KEYBOARD DRIVER

1.1 CHSNSG —-~ See 1if key is entered

Description

he CHSNS chiecks 1§ character o resEscy an KeyYDosrad quaoti:
CHENS supports function kevs and pasts key.,

crntry Name
Zntry Address
Input parameter

Output parameter

Registers altered

CHSNS
1830H (62050)
None
Zero=1 if character is ready.
Zero=0 if no character is

ready .

(Al and flags

CHGEY —~—— (B2t A character from the kevboard
Description
The CHGET reads a character ftrom the kevboard. Paute and

[
funchion keys are suppocrted (ie: expanded into ocharact.:-
string).

Tre CHGET also performs time-~ocut checking. I+ =neo oy o0
time-~-out interval is gone, conktrol directly goes Lo atis
power down routine, which turns the machine down.

The btima out error will occur 1if a key is nobt nressed. [N
this takes place the procezsor will initiate the auto oower
down routine.

Entry Name CHGET

Entry Address . 174DH (59650)

Input parameter None

Output parameter ~ [Al=Character typed
Register altered LAl aﬁd flags

Sample program of CHGET

Following tiny program shows how to use CHGET (and CHPUT
which will appear later in this document, and displavs a
character on LCD). The program is very simple, it reads a
character ftrom the keyboard and echoes ikt on LCD. Typing @
“C terminates the program and return to BASIC. The program
is assumed to be executed by the BASIC EXEC statemant.

The following sample program demonstrates fthe use of t
routine CHGET. The routine reads a charachter Yrom b
<evooard and echos it to the LCD screen. The routine wi
pertform kthis function until a Control-C is pressed.

e

Ot

G

caLL

cPT
R
CALL
Jme

Rz

Fivaen

Keyhoaira

CHGET

D30

CHPUT
£CHO

arnd

ecnoes

all characcters o LCD uncil

Get @ character from the RKerDoare

Raesulk is passes in A}
Is this @ C7?
Yes. Retuurn to Basiac

Otherwise display it on LCO.

Loop until C is given

]

BREAKX ~-- Sense shift+stop key:s
Description

e BREAKX is used to sense shift and stop keys. [both sre
depiressed, the BREAKX raturns carcyseh. Nobe Lhain ool o
senses the Keyboard directory. CHGET and CHSNS works looking
at ithe keyboard queue rather than seeing the keyboarda. Lo,
they do not work 1f interrupts have been disatiled. TS
BREZAKX, 1in turn, works already. The shifb+stop 15 als

aueued in the keyboard dqueue as a C character if interrupts
are enabled.

3

The BREAKX routine traps the "sShift” and "Stop” keoy«. I
both are depressed the BREAKX routine returns a condition oy
carry fTlag set. If interrupts are enabled the SHIFT+STOR

key combination generates a CONTROL-C.

XX*!:X***TFST*X****XX

Entry Name : BREAKX

Entry 72DFH (29407D)

Input parameter _ Nore

Output parémeter Cérry= 1 If sHift+stop haQe

been depressed.
Carry=0 Snhift+Stop ot dets=cted.

Registers altered [(A] and flags

CHAPTER 2 {.

CHPUT —-—— D

isplay a character on conscle

The CHPUT displays &

character is placed at
CUrsor postion

displayed.

"POSIT" routine or via an

CHPUT

Entry

m

ntry

Input

Cutput

character on the system cormsmale, i
ctirrent cursor posibion. i
is incremented after the charscbher s

The cursor posiktion may be altesred via o

parameter:s
Name
Address
parameter

parameter

" Register altered

command.

CHPUT
4363H (172510)
[Al=Character to be displaved

None

A

o

290 command:s
CHPUT accepts E9C commands and several control characters as
wall as normal printable characters. Following 30 commeris

ara supported by CHPUT.

The Tollowing demonstraces the wuse of E3C commands vi.i
the "CHPUT" routine.

Zxample:

SCHPUT EQU 04363h
“sC U 27
MVI A, ESC 327 decimal, 1o nex

Call. CHPUT

Mvi a,"j" sClear the screen command
cAalL L CHPUT
END

t
DU

i

N

Ui

G

n

mmmm
N
) 1)

19);
OO0 0O0

L XM

HE

< X

E<CTHD T

(vypos?{xpos?

Clear the screan
Clear the screen
Erase to end of Line

Erase to end of screen

Erase entire lins
Insert a blank line
Delete current Line
Locate cursor to
({ypos), {(xpos)
Move cursor up
Move cursor down
Move cursor rigant
Move cursor left
Move cursor Homa
Enter reversed video
Escape from reversed
mode
Turn on the cursor
Turn off the cursor
Set system line
Reset system line
Lock screen
Unlock screen

mocie:
Wit

The "Set system line" and "Reaet system line” commands .
used to display function keys and any system messagas
bottom line (ie: "Memory full' error message in TEXT
The "Set system line"” command allocates the boiiom Line

a sayztem display line. This line is not wused {or oromost
character display.

i
[CTRIERRI AT

meocte) .

The "Set System Lirie” does not display the functi

@] ey
de¥inition. The rouktine "DSPFNK" Must be used to display
the furnction kevys. The "Reset System Line" does not epmos
the functbtion key Line. To erase the funchbion kay iz 1gaa:

the "ERAFNK" routine.

Note: Once the system line is set, the cursor acannot
located on the system line. To write messayges on the
lirne, temporarily reset the system line during
acters on it

e
Sy S e

Dutting char-

)

¥

B Control Characters

CHPUT accepts the Tollowing cuntrol characters.

a70
D50
P90
10D
110
12D
130
270
230
290
390
310

10

Beep
Baok
Tab

Line
Home

space

Teed

Clear the screen
Carriage return

Invoke

Mowve
Move
Move
Move

cursor
T SHOr
cursor
cursor

ESC command

right
leftt
up
dowrt

DSPFENK -~~~ Display funchion kevs
Description

The DSPFNK routine is used to display function keyvs o
ayaslttem Line., It the system line has noht been enablad,
DEPFNK sutomatically enables the asystem lLine.

Zntry Name DSPFNK

Entry Address 42E4H (171240)
Inout varameter Noene

Output parameter None

Register altered All

11

N
.
A

Set

ing

Function

definition.

Strings must be 15 bytes long.
derfinition

Low,

Set atring

FNKS TR

SETFNK:

MOVFNK :

NUILZLL :

FILNUL -

Function Key

EQU

XTI
LLXI

MVI

L.0DAX
MOV
INX
INX
ORA

Jz

OCR
JINZ
DCX

MVI
RET
DCR
RZ

MVI
INX
IMP
DB

D3

" COMMAND "

function key string

Key definitions
Keaping Area’.

are

stored in the "Syatem ooov
16 bytes are allocated for sach rfunctinn ka2

Null fill the stirirrg i e

is less than 15 bytes. The 1ath byt of b
detinition must be null character.

Dr6ASH

D,MYSTRG

-

]

r

H, FNK3TR+16*5

M, 28

H

FILNUL

> COMMAND’

71%]

12

3

>

;Address of function key 5.

T Y I YO T

ws wr we us

o

N owe oar owa

“s

the following sample progeam.

to the function key 5.

Functionn key shtring ares

Where original is stored
each function key consist of
16 bytes)
Length of an entry

Copy a character

All character have been
copied? .

Yes. Fill the rest by NULLs.
More room in antry™?

Yes. Keep copylng

Too long string

Force last character to be

R
7

Fill the rest of entry by
NULL s

All done

Put a NULL

Keep filling
String to be set to function

key 5
Terminatotr

N

ERAFNK —~~~ Erase function key lina
Desceriction

The FERAFNK routine is used to erase the system 1inme and
resat the syastem line. The ERAFNK routine may be ussd bo
erase function keys or any message previously displaved o
the system line. The ERAFNK routine does nothing ir tn.:
system line has not been enabled.

Entry Name ERAFNIK

Entry Address 4&2C3H (170910)
Input parameter None

Output parameter None
Registers altered . All

Sample program of DSPFNK and ERAFNK

The Tfollowing sample program perftforms the following =3
The routines "DSPFNK" and "ERAFNK" will be used.

he
¢4
ke
7]

1) Assign "Hello" to function key 1.

2) Display all 5 function keys.
3) Wait form keyboard input.

4) Erase function key line.

5) Return to Basic

13

sample

HEILLLO:

program of OSPFNK and ERAFNK

LXT

LXI
LXI
CALL

CALL
CAL.L
CAL.L

RET

DB

DR
DB
Da

D, FNKSTR

H, HELL.O
B,9016
LDIRSH

DSPFNK
CHGET
ERAFNK

>Hello’

14

Set "Hello” into funci Lon
key #1

Where "Hello" atored rmow
Length of the skbrindg

Copy the string

LDIRSB is a ROM routina
which

iz similar Lto £-807 3

LDIR instruct ion

Then display function kevy
Wailt for arny key tvyped
Erase the function keay
L.CD

All done

Return to BASIC

Freom

String to be set in
function key #1
Fill by NULL

2.6 POSILT ~—- l.ocate cursor
Description
This function positiorns the cursor orn the display.

The POSIT routine i3 funchionally eguivalent to bthe "Locat.:
cursor” ESC command. The difference is that the "L ocmie
cursor” command uses coordinates wibtn offset of 32, wivii.-

POSIT interprets the given coordinates as 1 relative.

Entry Name POSIT
Entry Address L2BFH (170870

Input parameter (H]l=X position
: [LI=Y position

Cutput parameter . None

Registers altered (A],(H],[L] and flags

To locate the cursor to the 5th character on the top line,
the following code will be used.
; Locate the cursor to the 5th character on the LCD top linae
LXTI H,5*256+1 X=5,Y=1
Since POSIT uses coordinates
; relative to 1. Home is (1,1)
Place cursor there

s wa

CALL POSIT

15

PLOT -~~~ Set A dot on LCD
Description

The PLOT routine sets & dot at the gspecified dot poasin
on the L.CO. Coordinates are relative to ©. The PLOT rout
iz not atftected by the current system lirmm sebhire. e
obther words, Lthe PLOT routine can even draw a dob on s
aystem line while the system line is being set.

Lo
Line:

The PLOT routine does not error check dobt coordinates. Lt o
vosition is givern out of the range of video meimnory: iha
resylhs are unpredictable.

Entry Name PLOT
Entry Address 7400H (299040)
Input parameter [(D]=X positiorn of the dot

Valid Range: (2= X (=239)

(E1=Y position of the dot

Valid Range: (@<(= Y (=63)
Output parameter None |

Registers altered All

16

UNPLOT -~~~ Reset a dot on LCD
Dencription

The UNPLOT routine pertorms opposite function R T ST LI BN
rout ine described in the previous section. Na UNPILLOT
resets a dot at the specified dot pozition.

The UNPLLOT routine does not error check dot coordinate:s. 1

s position is givern out of the range of video memnmory; e
results are unpredictable.

Ertry Name UNPL.OT
Entry Address 7401+ (293050)
Input parameter (D]l=X position of the dot

Valid Range: (@<{(= X (=239)

[E]QY pesition of the dot

valid Range: (@¢(= Y (=63)
Output Darameter Nqne

Registers altered All.-

17

2.9 Sample program of PLOT and UNPLOY

The following program illustrates how to use PLOT and UNPLOT
routines. The program works Jjust as two PC-23UY N33 Ba3iC
statements below are executed.

LINE (12,10)~-(19@,509),7,BF
LINE (20,20)~(90,40),0,8F

3 Sample program of PLOT and UNPLOT routines.
I.XI D,18*256+10 3 Fill A hox of (1@, 1@)

-(129,50)
1 Set up starting position

MVI -, 122 ; Ending X posikion
FILLOP:

PUSH D ;3 Save X position

CAalLLL. SETLIN ; Draw a horizonktal line from
; (o1, [E1) to (IHI,LE])

POrP D . 3

INR €& ; Bump Y position

MOV ALE ;

CPI 51 ;5 All line where draw?

JC FILLOP ; No, draw next line

LXI D,20*%256+20 . -3 Now large box was filled.
; clear small box inside ofF

o the large box. :
MVvI H,90 ; Ending point of X
CLRLOP: '

PUSH D :

CalLi. CLRLIN ; Clear a horizontal line of
; ([D1,[E7) to (LHI,LE1)

PORP D

INR E ; Bump Y position

MOV ALE . ; See if all lines

CcrPI 41E 3 are erased

JCI CLRLOP ; No. Begin to PRESET the nexi

line
RET 3 All dona

;s Return to BASIC.Note Lhat
; thiszs program should e
3 lnvoked by EXEC statemernt:

18

; Draw & horizontal line of

SETLLIM:

; Clear a

CLRLIN:

~USH H

PUsSH O

CALL PLOT
FOP D

POP H

INR D

MOV ALH
cMP 0O

JNC SETLIN
RET

(o1, e -(HT, LED)

horizontal line of

PUSH H
PUSH D

CALL UNPLOT
POP
POP
INR
MOV,
CMP
JINC
RET

O0U»0O X0

LRLIN

19

Save ending X in {4
Save currant oosition

Set

e oJdot wml (Lod,ie0

Advance curvent point miami
& dot
See it all dons

No.

Set next doi:

((ol, () ~-((RI, LED)

Save ending X
Save current X and ¥
Reset a dot at (L0LJ,[&])

Move a dot right
See if reached to ending X

No,

resett next dot

2,19 How Eto interrogate the current cursor position

The CHPUT routirne always keeps track of the current cursor

position. The current cursor position i3 shore

system book keeping area. The cursor position =
the addresses shown below. The wvalues stored
locatiorns are 1 relative.

CSRX F3E6H (624380) Current X
C3RY F3ESH (62437D) Current Y

290

d i tive

oy secl o e

At iy

CHAPTER 3 PRINTER DRIVERS *
Decscription
The PRINT routine prints a character to system printer.

All interruphts except RS-232C are disabled. 3hift+Stoo wii:
abort the PRINT routine.

3.1 PRINT ~=- Output a cHaracter to the priﬁtar
Entry Name PRINT
Entry Address 6092H (280500D)
Input parameter [A)=Character code to be
printed
Output parameter . Carry=0 If successful.
Carry=1 If aboﬁted oy

shift+stop.

Registers altered Flags

21

3.2 How to check if printer is ready
There is no routine or function which indicate the status of
the system printer. The following sampls erogram wi Lt
list the steps necessary to get the astatus of ithe wLriot e,

; Check printer status routine

PORTC EQU 28BH ; Priinter status port

PRTS3NS :

N PORTC Get printer status

s

AN AARRNNL1D8 ; Check 8USY and SELECT bik
XRT 200000108 ;3 Set zero if printer is ready
RE ;3 On return zero=1l s3hows printesr i
ready.
; zero=@ denotes printer i3
busy.

22

CHAPTER 4

Rem

Bank Handlers

The RPC-8300 contains 64K bytes of memory. The memory 1=
divided into two banks of memory (32K bykes gach). Aot
Aadditional 32k byte ram cartridge may be added Lo the
PC83009.

The ROM provides two primitive routines which accesse data
Yrom thass memory banks. Bank szselechtion is made in bHlock:s
of 32K bytes. Switching banks without these routines wil)
cause application programs Lo halt, because the procasson
Wwill be unable to firnd the next exscutable instructiorn.

Care should be taken when switcening memory banks. i.e 4§

the R$-232C 1is opened while running in memory bank 1 &nd
processor control 1is transterred Lo memory bank hbwo wibthout
closing the information channel; any characters received
Wwill be qgqueued in memory bank 2. Communications wmroiocol
set up in bank 2 could be different from the protocal set up
in bank 1.

Information regardlng the bank control hardware can bp oo
in the hardware reference mdnual

Using the ROM supplied bank handlers will elimirnate any
nroblems which could arise during memory bank switching.
This is possible because the routines will run while the
interrupts are disabled.

23

£

b

GETBNK —--- Read a obyte from any RAM bank
Description

Read & byte from any memory barnk. The memory Dark oo rema
does not have to be the current memory bank. Tine rowurir.:
temporarily charnges the current memory bhank reads ohe oy o
and thnen restores memory to the previouws oank.

Note: Interrupts should be disabled before calling the
GETBNK routine.

Entry Name GETBNK
Fntry Address 7EECH (32492D)
Input parameter [Bi= SBank Number

NP :Bank #1 Main Bank
@8 :Bank #2
QC:Bank 3

[(HL.]=Address of the byte to be

read
Vutput parameter » {(D]=Byte read
Registers altered {al,[cl, (D] and flags

24

L2

PUTBNK —--—- Write a byte into any RAM bank
Description

Write a byte from any memory bank. The memory bank to write
does not have to be the current memory bank. The routinae
temporarily changes the currernt memory bank write the bhyta
and then restores memory to the previous bank.

Note: Interrupts should be disabled before calling the
GETBNK routine.

Entry Name PUTBNK
Entry Address 7EEBH (324910D)
Input parameter . [Bl= Bank Number

Q0:Bank #1 Main Bank
@8 :Bank #2
2C :Bank #3

[HL]=Address of the byte to be

written
OutputAparameter [D]=Byte read
Registers altered ral,(cl,[D] and flaas

25

4.3

2

Change current year to 84

MVl D, 04D

Mvi B8,900

LXI H, TIMBUF+1@D
oI

CALL PUTBNK

Mvil 0,08D
CALL PUTBNK
EI

26

we w1 ws

Sample program for different bank access
The Tollowing example shows how Lo

wse the PUTBNK routine.

New year is 84

Write low digit first
Always write it in bank 1
(standard RAM)

Where year is maintained
in the bookkeeping ares
Disable the interrupt
Write low digit

Then write upper digit of
the year

Write it
All done, allow all further
interrupts to come

CHAPTER 5 RAM FILE HANDLERS

There are three kinds of RAM files manipulated by PC--830204A,
namely text files (xxxxxx.D0), BASIC binary program fiies
(xxxxxx.BA), and machine code files (xxxxxx.CQO). Only the
text files can be read and written by wuswual OPEN,READ,WRITU
and CLOSE calls (Section 11.1 through 11.5). Deleting and
renaming are supported for all types of Tiles.

The RAM file manipulation routines only work on existing
files. To open a nonexisting file please refer to chaphter & "Ram
file System” in the "“Internal Structure of the PC-83002A" marual.

27

]

5.1.1

Opening a RAM file

The open a RAM file, the NULOPN routine can be used. BRBefore
calling this routine, file name should be set up in FILNAM.

The NULOPN routine (and INDSKC,OUTFL1 and CLSFIL routine in
subsequent sections as well) supports only text Tiles whosa

extension is ".D0". BASIC binary program files and machine
code file cannot be accessed by these routines.

Setting up file name
The file name should be formatted in FILNAM as below.

FILNAM=FB78H
FILNAM thru FILNAM+5

The name of file may up to six characters long (plus the
extension). IfT the name is less than six characters long
the remaining bytes should be filled with spaces. The
characters in the name of the file may upper or lowercase.
The routine "NULOPN will convert all the characters to
uppecase.

FILNAM+é thru FILNAM+7

The ‘extension is stored here. It is always "DO". ("D" 1is
stored in FILNAM+6&, “"0" is stored in FILNAM+7).

FILNAM+8

Always a space character.

28

1.

2

NULOPN —--- OFEN FILE

Description

Opens an existing file specified in FILNAM.

If any error was detected during opening a file, control
directly goes to BASIC’s error routine.

Once the file name 1is
can be called.

Entry Name
Entry Address

Input parameter

Qutput parameter

Registers altered

correctly selt in FILNAM, now NULOPN

29

NUL.OPN
4EBEH (221580D)

File number
Open mode
1-Input mode
2-0utput mode
8-Append mode

(A
LE

it

]
]

(Dl=Always FoH (03710D)

[HL]:Should point to a

NULL character (990)
Nohe,

All

5.1.3 FINPRT ——-- Post processing of OPEN

Atfter the file was successfully opened, you should call
"FINPRT" routine. The FINPRT is the post—-processor of the
NULOPN and sets up some book keeping area correctly.

Entry Name

Entry Address

Input parameter

OQutput parameter

Registers altered

30

FINPRT

2F26H (3878D)
None

Nona

[A] and flags

5.1.4

Shown below is a
File number 1 is used.

put .

; Open

MYFILE:

E0L.:

Sample OPEN code

the file whose

LXI
LXI
MVI

MOV
STAX
INX
INX
DCR
INZ
MVI
LXI

LXI

(OF- VI

caLL

DB

DB

D, MYFILE
H, FILNAM
8,090

A, M

(D)

D

H

B
SETFNM
A,01D
D, OFSH*120H+1
H, EOL
NULOPN
FINPRT

"FILE DO "

- Q@0

31

name is

sample code to

"FILE"

e wE Wy

open a file, "FILE", for in-

for input using channel #1.
File name 1is stored now
Where file name is set umn
lLLength of the name

Move file name into FILNAM

Use channel 1

Open mode is for input

[D] is always FSH

[(HL] should point to a NULL
character

Open the file-

Set up some variables in
system book keeping area

Name of the file to be
opened ‘

Null character used to call
NULOPN

6]

Reading a character from a RAM file
Description
Read a character from a ftile.

After a file was opened, reading a character out of the file
can be pertformed by two ROM routines, namely SETFIL and
INDSKC.

The SETFIL sets up a file pointer to the file table
specified by the file number passed in accumulator. I[NOSKC
reads the character into register A and sets the carry Tiag
if end-of-file is reached.

Entry Name SETFIL
Entry Address LES6BRH (200750)
Purpose Set up file pointer to the

file control block

Input parameter [A]l=File number

Output parameter ~A None

Regisfers'altered P&ssibly all

Entry Name INDSKC

Entry Address 5@15H (20501D)

Purpose Read a character from a ftfile
Input parameter None

Output parameter Carry flag set (1) if end of

file has been reached:

Carry flag reset if successful

(A]l=Character read ’
Registers altered (A] and flags

The following demonstrates the use of SETFIL and INDSKC.

Read a byte from the file whose file number is in [A]

CaLl. SETFIL Set up file table pointer of

; Tile [A]
CALL INDSKC 3 Try to read a byte
JC EOF ; EOF detected

: Otherwise, [A] contains
; character read

32

H

FILOU1L - Writing a character to a RAM file

Description

Write & character to & file.

To write a character to the file that has been opened LYy i
NULOPN routine, SETFIL and FILOUL are used. FILOUL
writes & character in [A] to the file prepared by the SETFIL

call which always precedes the FILOU1 call.

It an error occurs during the write, control is transtferread
Basic’s error routines.

Entry Name © FILOU1

Entry Address 4FEFH (20463D)

Purpose . Write a character to RAM fila
Input parameter [Al=Character to be written
Output parameter None

Registers altered.) N@ne

Write a character in [A] to the file in channel 2.

PUSH PSW ; Save a character

MVI A,Q2D ;3 Set up channel

CALL SETFIL H

POP PSW ; Restore character
CAaLL FILOUL 5 Output it to the file

33

CLSFIL - Closing a RAM fTile

Description

Close a Ram File.

If an error 1s detected corntrol 1

]

transterred o Basic’s error handler.

Entry Name

Entry Address

Purpose

Input parameter

Cutput parameter

Registers altered

34

CLSFIL

4EE4GH (20196D)

Close a file

(Al=File # of the file ro beo
closed

None

All

Closing all fTiles
Description

The CLSALL routine closes all files. Not only RAM files bt
also other devices supported by BASIC’s generalized device
I/0 scheme are closed (this is also true for CLSFIL
routine).

Entry Name CLSALL

Entry Address 4FBFH (204150)
Purpose Close all files
Input parameter None

Output parameter None

Registers altered | All except [HL]

35

5.6 Sample file I/0 program

The following small program shows how to use file I/0
routines. The program copies a text Tile "SOURCE" to des-
tination file "COPY". If the file named "COPY" already ex-
ists, the old one is deleted. This program uses two file
channels. Give MAXFILES command in BASIC before trying this
program so two or more channels can be used.
; Sample file I/0 program
; Copy everything in a file "SOURCE" to a file "COPY"

LXI H,SOURCE : Open "SOURCE" ftor input as

file #1
First set up FILNAM

LXI DO,FILNAM ;

LXI B, 20990 3 Length of file name
CALL LDIRSH ; Transter file name into
- - FILNAM

MVI A,0Q1D
LXI D,QFIH*QFFH+@1D

Use channel #1
Open mode is "for input”

LXI H,EO0L .3 [HL] should point to null
character
CALL NULOPN ; Do open the file

CALL FINPRT
LXI H,COPY

Set up something

Then open destination file
for output as #2

LXI D,FILNAM
CALL LDIRSB
MVI A,@2D

e ME Me 3 W us

Use channel #2 for output
file

LXI D,0F9H*OFFH+@2D Open mode is "fTor output”

ar we

LXI H,EOL (HL] should point to null
character
CALL NULOPN ; Do open output file
CALL FINPRT ; Magic word!
COPLOP :
MVI A,01D ;s Then read a character from
; source file
CALL SETFIL ; Set up pointer for file #1
CALL INDSKC ; Get a character
JC ISEQF s End of file reached
PUSH PSW ; Save the character
MVI A, 22D 5 Then set up for output
CALL SETFIL 3
POP PSW ; Reget character
CALL FILOU1 5 Output it to file #2
JMP COPL.OP ; Keep copying until EOF
;- 1s reported
ISEOF :

MVI A,01D Everything was copied. Close

all files

- ows

CALL CLSFIL
MVI A,Q20
CALL CLSFIL H
RET '

we

Return to BASIC
; This program assumes to be
called by EXEC statement

ws

36

C

@)

URCE :

OPY :

~OL:

08
08

DB
D8

DB

" SOURCE"
113 DO n

"coprPy "
“" DO "

2aH

37

s

wa

from BASIC.

Source file name

Destination file name

NULOPN reqguires [HL] to
point a null character

Killing a RAM file

The ROM supports three routines, KILASC, KILBAS and KILCOM,
each of which deletes a text fTile, BASIC binary progrian
file and machine code file, respectively. ALl of them need
special setup before being used.

LNKFIL is uwused to fix up directory structure.

SRCNAM searches for the specified file, and rekurns soma
variables referred to by KILASC, KILBAS or KILCOM routines.
SRCNAM may also be used to see if a certain file exists, arvi
to establish the typne of the file and physical address where
the file is stored in RAM. Description of the 3SRCNAM roucine
will be found in later section.

38

5.7.1

LNKFIL -—-— Fix up directory structure
Description '
The LNKFIL routine fixes up all possible incomplete "Lirnks”

between files and their direcrtories. Each file is associated
with its directory and a link exists between them. During
file 1I/0, there is a chance that the link is not properly
maintained. More precisely, there is a chance that the
link is intentionally left incorrect assuming it to be fixed
up later during further file I/0 . . Since deleting a file
may be made while other file I/0 is in progress, and soma
links may not yet have been fixed up, all the links should
be fixed explicitly berfore the deletion is perftformed.

Entry Name LNKFIL

Entry Address 233AH ($0180D)

Purpose - Fix wp directory pointers
Input parameter None

Output parameter None

Registers altered .All

39

.2

KILASC -~~~ Killing a text file

Description

The KILASC is

Entry Name

Entry Address

Purpose

Input parameter

Qutput parameter

Registers altered

40

used to delete a text file.

KILASC
21A8H (8616D)
Delete a text (.DO) fil=

Are given by SRCNAM call

" None

All

; Delete the text file whose file name is "MYTEXT.DO"

COPFIL:

NOTFND :

NOTASC:

FILOPN:

MYFILE:

LXI O,MYFILE Where file name of the tila

to be deleted is stored now

Move it here. SRCNAM alway:s

search for a file whose name
3 1is set in FILNAM

MVI B,83D ;s Length of the name

LXI H,FILNAM

LDAX D 35 Do copy the filename
MOV M ;

INX H 5

INX ©

DCR B

JINZ COPFIL

CALL LNKFIL

er W we

Fix up possible missing
links

Search for the file to be
deleted

The file was not found
give an error, or do an
everything

what you like

CALL SRCNAM

JZ © NOTFND

MOV B,A Save file type. File type is

' ; returned from SRCNAM in (A]
ANI ©@2D ' ; See if this file is open
JNZ FILOPN ’ 5 Yes. Perform your érror

o processing
MOV A,B ; Reget file type
ANI 40H ; see if text file bit is set
Jz NOTASC ; Not text file ’
CALL KILASC ; This is a text file. Let’s
delete it

Your error processing routirie for the case when file is
not Tound ’

Your error processing routine for the case when the
specified file is not text file

Your error processing routine for the case when the
file is open

DB "MYTEXT" 3 File to be deleted
DB "po " ; It’s extension

41

.8

KILBAS ——- Killing a BASIC binary program ftil:a
Description

KILBAS is used to delete a BASIC binary file.

Entry Name KIL.BAS

Entry Address 2200H (8704D)

Input parameter Given by SCRNAM call
Output parameter None

-Registers altered All

42

; Delete the text file whose file

COPFIL:

NOTFND:

NOTBAS:

MYFILE:

LXI D,MYFILE

LXI H,FILNAM

MVI 8,090

LDAX D
MOV M, A
INX H
INX D
DCR B

JINZ COPFIL
CALL LNKFIL

CALL SRCNAM

JZ NGTFND

ANI 6@H
INZ NOTBAS

CALL KILBAS

name is "TEST.BA"

WA wd we M wl ua

[TR FRETY

FTEET IR Y S

U TR T RN Y T T S TRy |

Where file name of the ftile
to be deleted is stored now
Move it here. SRCNAM always
search for a file whose name
is set in FILNAM

Length of the nama

Do copy the file name

Fix up possible missing
links

Search for the file to be
deleted

The file was not found.

Give an error or do anything
what you like

See if this is really a
BASIC binary program file
Not BASIC binary program
file : :)
This is a BASIC binary file.
Let’s delete it

Your error processing routine for the case when file 1s

not found

Your error processing routine for the case when the
specified file is not BASIC binary program file

DB "TEST
DB "Ba "

43

FIle to be delete
It’s extension

7.

KILCOM —--~- Killing a machine code file

Description

The KILCOM is used to delete a machine code Fils.

Entry Name

Entry Address

Input parameter

Output parameter

Registers altered

44

KILCOM

21C2H (8642D)
Are given by
Norie

All

SRCNAM call

; Delete the machine code fTile whose Ffile name is "PASCAL.CO"

COPFIL :

NOTFND :

NOTCOM:

MYFILE:

LXT D,MYFILE ; Where file name of the tile

to be deleted is stored now

Move it here. SRCNAM a&lways

search for a file whose nams=
s is set in FILNAM.

MVI 8,090 ; Length of the name

u uwe w

LXTI H,FILNAM

LDAX D : Do copy the file name
MOV M, A H
INX H 5
INX D ;
DCR B8 H
JINZ COPFIL 5
CALL LNKFIL ; Fix up possible missing
. links
CALL SRCNAM ; Search for the file to be
. deleted

The file was not found.

Give an error or do anything
what you like

See if machine code file bit
is set

Not a machine code file
This is & machine code file.
Let’s delete it

Jz NOTFND

ANI 20H

ws WE W ws s

JZ NOTCOM
CALL KILCOM

-

Your error processing routine for the case when file is
not found.

Your error processing routine for the case wheri the
specified file is not a machine code file.

(0]~ "pPascal.” ; File to be deleted
DB “co " ; It’s extension

45

Renaming a RAM file
Description
Rename a fFile.

Note: The two character extension of the filename should
remain the same.

If the file to be renamed does not exist or the new file
name is already 1in use control is transferred to Basic’:s
error handler.

Entry Name NAMESB

Entry Address 2228H (87470)

Purpose Rename a file

Input parameter 0ld fTile name is stored in
FILNAM.

New file name is stored in
FILNMZ2.

FILNM2=FB81H

Note: FILMNZ uses the sama
format as FILNAM.

Output parameter None

Registers altered ‘ All except [HL]

46

Search for a RAM file
Description

Search for a filename stored at FILNAM and return dits
address in RAM.

Note: Directory links should be fixed up before calling the.
SRCNAM routine.

Entry Name SRCNAM

Entry Address 2298H (8859D)

Input parameter File name should be set up in
FILNAM

Cutput parameter ZeroFlag Set if file does not
exist.

The following information is
valid only when Zeroflag i3
reset (@).

;[A]=File inférmation‘

Bit 7=Always set

Bit 6=Set if text Tile

Bit 5=Set 1if machine code file

Bit 4=Set 1if built in wtility
(i.e. BASIC,TEXT or TELCOM)

Bit 3=Internal use

Bit 2=Internal use

Bit 1=Set if the file is open

Bit @=Internal use

[HL]=Pointer to the directory
entry for this file

{DEl=Address of the file

Registers altered All

47

5.10 Sample program to search for a file

The Following code demonstrates the use of the SRCNAM

routine. The routine below searches for a text file. I+ theo
file exists the routine will count the number of bytes i
the Tile.

Note: A text file is termirnated by a Control-zZ (Hex 1A).

; Count the number of bytes in the text file whose name i3
"SAMPLE.DO". The

; number is returned in [HL]. End of file mark is also included
in the result.

CHKLEN:
LXI D,MYFILE ; Where the name of the file
; is stored
LXI H,FILNAM ;Copy is here since SRCNAM
; always gets file
.3 name out of here.
Mvl B,090 ; Length of the file name
COPFIL.: :
LDAX D H
MOV M, A H
INX D H
INX H ;
DCR B . 3
JINZ COPFIL 3
CALL LNKFIL ; Fix up all possible incor
: rect links
CALL SRCNAM ;5 Search for the file
JZ NOTFND ; No such a file in RAM.
ANI 4 OH ; File exist. Make sure this
; is a text fTile
JZ NOTASC ;s Not a text file. Blow him up
LXI H,020000 ; Reset # of bytes in the tile
LENL.QP :
LDAX D ; Get a byte out of the file
INX D ;
INX H ;s Increment # of bytes seen
CPI 1AH ; Is this the end of the ftile?
JINZ LENLOP ; No. Keep counting
RET ; All done. (HL] holds # of
; bytes in the file
MYFILE :
DB "SAMPLE" 3
o8 "Do " H
NOTFND:
Place error routine for the case when file not found.

NOTASC:
i Place error routine for the case when the file is not a
text file.

48

5.11 Changing maximum file number (MAXFILES)
Description

Changes the maximum number of files set up by Baszic’s
"MAXFILE" command.

Updates the file buffer allocation area. This routin also
performs a partial file related pointer setup. The remaing
file related pointers should be set up by uwsing the CLEARO
routine. -

Note: DEFILE requires some overhead.

1) Routine CL.SALL must be executed to close all files.

23 Routine CLEARQO must be executed for initialization.

The OEFILE updates the stack pointer. As long as the ODEFILLE
has been originally designed to be used by BASIC, and EBASIC
allocates its stack space below the file bufrers, BASIC
needs stack pointer to be updated whenever the file buffer
allocation is changed.

The DEFILE updates the stack pointer. DEFILE was designed

to work with BASIC. Basic allocates its stack space below
the file buffer area. The stack pointer must be updated

whenever the buffer allocation is changed.

Note: Everything push on the stack during an application
is lost after the OEFILE routine is executed.
Therefore, the return address of basic is also

lost. To return to Basic a "IMP" must be invoked.
Entry Name DEFILE
Entry Address 7F1CH (32540D)
Input parameter {A]l=Number of files
Output parameter None
Registers altered All. Stack pointer is also
changed

49

5.11.1 CLEARO - Reset Environment of BASIC
Description

This routine is used in conjuction with the DEFILE routine.
CLLEARO pertTorms a reset of the pointer setups.

Entry Name CLEARO

Entry Address 3FFCH (163802D)
Input parameter None

Output parameter None
Registers altered All

50

“hange the number of files. New number is passed in [A]

-ADY ZQuU @620H
PUSH PSW ; Save new number of files
caLl cuLsall Close all open files 1if any
POP PSW Reget # of files

Change the number
Set up some pointers

CALL DEFILE
CALL CLEARO

JIMP READY ; Return to BASIC command
; level directly. We cannot
use

; "RET" here even if this

;3 pProgram was invoked by

; EXEC statement since return
address in stack has been
lost

s

51

5.12 How to acauire the current MAXFILES wvalue.
Basic keeps track of the maximum number of fFfiles allowed
(MAXFILES) in its book keeping area. The MAXFILES always
holds Lthe current MAXFILES value.

MAXFILE=FR62H ; Current Maxfiles value

52

LS.

\PTER 6 PHYSICAL CASSETTE DRIVERS

L

CMTRMT —-—-— Motor control
Description

The CMTRMT (for CMT remote control) 1is used to turn the
cassette motor on or off. The CMTRMT routine will be used
just to control cassette motor without subsequent cassette.
I/0 operation. In this sense, CMTRMT is similar to the MOTOR
command in BASIC. To turn the motor on for subsequent
cassette read/write operation, there is no need to call the
CMTRMT routine explicitly since CSRDON or CWRTON routine
automatically controls the cassette motor. To turn the motor
ofFf after all cassette I/0 was finished, use CTOFF.

Entry Name CMTRMT

Entry Address 6FDOH (28633D)

Input parameter (E]1=® Turns mofor off
(EJ(>@ Turns motor on

Cutput parameter None

Registers altered [A] and flags

53

DATAW —-—— Write a byte to cassette
Description

The DATAW routine writes a byte stored in [A]l to cassette

tape. The Baud rate for the write is 6@@. If SHIFT+3TOFP i3
vressed the write is aborted. Before using this routine
the cassette motor should be turned on. Generally the CWRTON
routine is called to set up for a cassette write

operation, including turning the motor on.

Entry Name DATAN

Entry Address 6FEBH (28651D)

Input parameter [Al=Character to be written

Cutput parameter - Carry set 1If aborted by
SHIFT+STOP

Carry reset if successful

Registers altered [al,(8]1,[cl,[pl,[E] and flags

54

DATAR —--- Read a byte fTrom cassette
Description

The DATAR routine is wsed to read a byte from the cassette
tape drive. (Data must have been written abt 600 Saud).

The DATAR routine does not check the stop bit (DATAW writes
two stop bits). So, there is no framing or overrun
condition. This was done to give the caller enough time
Lo process the byte read before next byte arrives.

Before using the DATAR routine, cassette motor should be
turned on.

Entry Name DATAR
Entry Address 708EH (28314D)
Purpose Read a byte from cassette tape
Input parameter None
Cutput parameter _ Carry set if aborted by
‘ SHIFT+STOP

Carry reset if successful
(Al=Character read from tape

Registers altered [(al,[81,[E],[H],[L] and flags

55

C3RDON ~——- Set up cassette for read
Description

The CSRDON routine is used prior to any read operation.
This routine turns on the cassette motor checks for the
carrier. If SHIFT+STOP 1is pressed while this routine is
walting for carrier control is transfterred to the I1I/0 erroi
handler after the cassette motor is turned otftf.

The C3ROON routine disables all further interrupts. Thea
interrupts are uswally reenabled wherni CTOFF is called.

Interrupts should be disalbed to handle serial to parallel
conversion and parallel to serial conversion.

Entry Name CSRDON

Entry Address 18EFH (6383D)
Input parameter None

Cutput parameter None
Registers altered ‘ All

56

Typical cassette read operation Tlow is show below.
;= Typical cassette read flow

CAL.L CSRDON s Turn on motor, wait for car-
rier

; To detect correct beginning of the data, special sync charac-
ters are isually

; written on the tape.

; Wait for the sync characters to come

3 Actual sync character code and its number are implementation
dependent

GETSYN:

MVI B, 10D ; Wait for sync character
SYNLOGP : . :

PUSH B H

CALL DATAR ; Read a byte

POP B H

JC ABORT
CPI SYNCHR
IJNZ GETSYN

If SHIFT+STOP
Is this my sync character?
No. Reset # of sync ’
characters seen .
And reset from the beginning
This is my sync char.
See if enough sync
characters
are seen

JINZ SYNLOP No. Keep eating
; Sync characters have been recognized
; Now read data bytes and process them

ws ws wa

DCR B

wr v

CALL DATAR ; Get data byte
JcC ABORT 3 If SHIFT+STOP

cALL DATAR ' ; Get next data
Jc ABORT 3 If SHIFT+STOPR

; All data have been processed
; Finish cassette read operation
caLl. CTOFF 3 Turn off motor

57

CWRTON —-—- Set up cassette for write

Description

Initialize cassette tape drive to perform tape write

operations. This routine writes out a null header to the
tape. There is no error condition. All further interrupts
are disabled. Interrupts are enabled by the CTOFF routine.

Note: Interrupts should be disabled during cassette 1/0.

Zrtiry Name CWRTON1

Entry Address 19014 (64@1D)
Input parameter None |
Output parameter None
Registers altered All

58

- 4 CTOFF —=—== Turn off cassette motor
Description

Turn off the cassette motor and enable interrupts.

Entry Name T CTOFF

Entry Address 1915H (6421D)

Input parameter None

Output parameter Nore

Registers altered [Aal,[D],[E] and flags

59

6.7 Sample cassette I/0 program

The Tolowing routine demonstrates the use of CSRDON, DATAR,

and CTOFF. The routine will read a rtile created by N-BASIC
and display all the data iq that file. N-Basic does not
terminate files with an End-0f-File marker. To terminats

this routine press Control-C.

; Type a cassette data file created by PC-8002 N-BASIC

CASLOP:
CALL CSRDON ; Turn on cassette motor arnd
; walt for carrier This
program '
; will be aborted it user
typed
5 a SHIFT+STOP during waiting
; for carrier and control
comes
; back direct to BASIC from
; CSRDON. If you want to avoid
; this, use "ERRIMP".
GET3YN
MVI B, @6H ;5 Wait for 6 sync characters
; (9CH) to come
SYNLOP : _
PUSH B 3 :
Cal.l. DATAR ; Read a byte from cassette
JC ABORT ' ; If aborted
CPI 9CH ; Is this a sync characters?
JNZ GETSYN ; If not, Reset # of sync
; characters seen and restart
; from very beginning
OCR B ; This is my sync characters
; See if 6 sync characters
were seen
JINZ SYNLOP ; No. Continue
LXI H,BUF ; Beginning of record was
found.
; Read the record into buffer
called BUF.
REDI.OP :
CALL DATAR ; Read next characters
JC ABORT ; If aborted by SHIFT+3STOP
MOV M, A ; Put it in to buffer
INX H H
CPI 13D ;5 End of record?
JNZ REDLOP ;5 No. keep eating
cALL CTOFF ; Everything in this record
was read.
; Stop cassette motor
LXI H,8UF ; Then display this record on
LCD
DSPLOP :

60

ABORT :

MOV

CAL.L
INX
CPI
JINZ
MVvI
cal.l.
JMP

CALL

MVI

CALL
RET

A, M

CHPUT
H

13H
DSPLOP
A, 10D
CHPUT
CASLOFP

CTOFF

A,@70

CHPUT

61

s

Pick up a character out of
buffer
Display it on LCD

Everything was displayed?
No. Display next
Do line feed

Then try to read next record
again

Aborted by SHIFT+STOP. Turn
off

cassette motor and allow
further

interrupts to come.

Beep to tell abort request
is accepted

And return to BASIC.

CHAPTER 7 PHYSICAL RS232C DRIVERS

7.

1

INZR232 —-—— {nitialize RS-232C port
Description

The INZ232 routine initializes the USART, sets up the baud
rate, parity control, data length, stop bits and RTS and DTR
lines. R$232C gqueue (receive dqueue. Transmission 1s not
aueied) is cleared. In PC-8300A, the USART is used by thre=
devices, namely RS-~232C port, floppy disk interface and
another serial interfaced storage device. The INZ232 routine
selects RS~-232C port. If the USART has been used by another
device, DU error is reported. Xon/Xoff control and SI1/3U
control 1is enabled or disabled by the current default
settings (one displayed by the STAT command in Term).

Entry Name INZ232

Entry Address 6F58H (28504D)

Input parameter [H]=Baud rate specifier
1=75 baud

2=110 baud
3=300 baud
4=600 baud
5=1200 baud
6=2400 baud
7=4800 baud
8=9600 baud
9=19200 baud

{L]1=Data length,parity and
stop bit specitfier

Bit 4 Bit 3 Data
Length
%] @ 5 bits
%] 1 6 bits
1 %) 7 bits
1 1 8 bits
Bit 2 Bit 1 Parity
@ %] Odd parity
%] 1 Even
parity
1 X No parity
Bit © Stop bit
%] 1 bit
1 2 bits

(*1)

(*1) When data length is 5
bits, stop bits is 1.5 bit

62

Output parameter
Registers altered

63

[B]I=RTS and DTR specifier

Bit 7 RTS

@ 1 active

1 A inactive
Bit & DTR

@ 1 active

1 @ inactive

[Cl=Should be FFH

None
None

7.2 SETSER --- Initialize RS$S-232C port using mode string
Description

The SETSER routine also initializes the R$S-232C port. In
conkrast to the INZ232 routine, the communications protocal
is determined by the "mode string”". The mode string is
A3CII string that has identical format to the string used in
the STAT command in TELCOM and OPEN statement in BASIC.

The PC-8308A maintains current default mode string {(the mocdoe
string specified by most recent STAT command, OPEN statement

or SETSER routine itself). The default mode string is called
"SERMOD". Following short routine initializes RS-232C port
using current mode setting.

Entry Name "SETSER

Entry Address 1C4EH (7246D)

Input parameter [HL.]=Points to the mode string.
Output pérameter None

; Initialize RS-232C port in current default mode

LXI. H,SERMOD . ; Where default mode string is
stored
CALL SETSER ; Do init using it

SERMOD=F4@6H

64

30232C ——~ Send a character to R$-232C port
Description

The $SD232C routine sends a character passed in [A]l to the
R3-232C port. The R%-232C port must be initialized betfore
using SD232C routine.

The $SD232C routine performs Xon/Xoff control if enabled.
When Xon/Xoff is enabled, and Xoff (°38) is received, the
SD232C waits for Xon (@) to come before sending a
character,

In additiorn, the 8SD232C performs SI/SO control if enabled.

Entry Name spz3z2C

Entry Address 6EBEH (2835@D)

Input paramater (Al=Character to be sent

Output parameter Carry reset if successful
Carry set if aborted by
SHIFT+STOP

Registers altered . [A] and flags

65

BCVYX —-—-— Check Tor character is ready in R3$-232C gueuz

Jescription

The RCVX routine is used to see if there is a character in
the R3-232C aqdueue. Before using this routine, RS232C port
must be initialized by the INZ232 routine.

Entry Name

Entry Address

Input parameter

Output parameter

Registers altered

66

RCVX

6DC2H (28098D)

None

Zero flag set 1if no character
is in gueue Zero ftlag reset iv
character(s) are in aueue.
When the Zero flag is
reset,{A] shows number of
characters in the

queue

[A] and Tlags

RV232C ~—-- Get a character from RS-~-232C queuse

The RV232C routine is used to take a character out of the
R3-232C receive aueue. If no character 1s available, thu
RVZ32C waits for character to come through the port.

The RV232C routine deftects a SHIFT+3TOP request. [
detected, the RV232C is aborts and the Carry FfFlag is set
upon return.,

If a character is waiting in the queue the RV232C routine
takes it out of the queue. I¥ the recieve is successful thae
character is returrned in the accumulator and the Zero flag
is set.

If Xon/Xoff control is ernabled queue control handled
internally. IT the aqueue becomes full XON/XOFF serids A
Control—-S and waits for the queue to be emptied. When the
queue becomes empty XON/XOFF sends a Chtrol-Q to resume the
reception of data. Also, if a Control-S or a Control-0 is
recieved they trapped by the ROM routines and not are not
sent to the caller.

If SI/S0 control is enabled, the RV232C routine appends or
removes MSB of the received character before passing it to
the caller., SI/S0 control characters themselves.are not
passed to the caller, but they,ére stripped off internally,
uriless SI1/S0 control is disabled.

If the received character in the gqueue 1is erroneous, tha
RV232C returns Zero reset to indicate the existence of an
error. In this case, contents of [A] are meaningless.

Entry Name RV232C

Entry Address 6DD3H (28115D)

Input parameter None

Output parameter. Carry set if aborted by
SHIFT+STOP.

Carry reset and Zero rtlag set
if successful [A] holds the
character picked up out of the
queue.

Carry reset and Zero flag
reset if there is a receive
error [A]l contains a garbage
character in this case.

Registers altered [A] and flags.pa

67

CL3COM ~-— Deactivate RS-232C port

Description

The CLSCOM routine deactivates the RS-232C port. DTR and RTS
lines are reset to a false state to minimize poweir
consumption. The multiplexer 1is released so other devices
may tise bthe USART. The CLSCOM routine should be called atter
RE~-232C operation is finished. Otherwise, arny attempt to
use the fTloppy disk will result in a OU error.

Entry Name cLscomM

Entry Address 6FA8H (28584D)

Input parameter None v
Output parametrer None

Registers altered (Al and flags

68

T 7 ENABLX -~~~ Enable Xon/Xoff control

Entry Name
T Fntry Address

Input parameter
Output parameter
Registers altered

Description

ENABLX

6F8DH (285570)
None

None

(Al and flags

The ENABLX is used to enable Xon/Xoff cortreol for
This routine should be called befor:2
INZ232 is called to initialize RS~232C port.

future R3-232C I1/0.

69

DSABILX ~-— Disable Xon/Xotff control
Description

Dizable XON/XOFF control. This routine should be prior to
Fhe calling of the INZz32 routine.

Entry Name DsABLX

Entry Address 6F8EH (285580D)
Input parameter None

Output parameter None
Registers altered [A]l and flags

70

3
=
[k

3

3 How to enable/disable 3I/30 control

The only way to enable or disable SI/S0 is change the memory
address which holds the
prior to calling the INZ232 routine.

Fnable SI/30 control
NABL. S

MV T A,"S"
3STA SERMOD+5
RET

Disable SI/30 control

JSABLS:

MVI A, "N"
3TA SERMOD;S
RET

Address of SERMOD
characteristics.

SERMOD=F4Q6H

71

which

DY

31/S0 status.

This should

Enable SI/S0O control

Disable

tells

be done

31/350 control

default

RS-232C

CHAPTER &

8.1 TIMRD

TIME HANDLERS
~--- Read current time and date

Description

The TIMRD routine is used to read the current time and date
(day and month only) from calendar clock chip. The time and
into the buffer pointed by [HL] in the

date

Note:

are stored
tfollowing format.

[HL]

[HL I+
[HL.]+2
[HL]+3
[HL]+4
[HL]+5
[HLY+e
[HL]+7
(HL1+8
[HLL]+9

Lower digit of second (9-9)
Upper digit of second (9-5)
Lower digit of minute (@-9)
Upper digit of minute (0-5)
Lower digit of hour (0-9)
Upper digit of hour (@-2)
Lower digit of day (0-9)
Upper digit of day (0-3)
Day of the week . (2:5un - 6:8at)
Month (1:Jan - C:Dec)

Interrupts should be disabled prior to the call to
this rouine.

Entry Name

Entry Address

Input parameter

Output parameter

Registers altered

72

. TIMRD

7359H (29529D) .

{HL]=Pointer to buffer where
the current time and data are

read into.

Current time and date are
stored in the buffer

(al,gl,tcl,(pl,[H], (L] and
flags .

Typical TIMRD wusage

LXI H, TIMBUF 7 Where time and date are read
into.

DI ; Disable interrupt

CALL. TIMRD ; Read current time and date

eI ;3 Allow further interrupt to
come

The ROM uses @& buffer located At F832h to store the time and
date. This buffer may be used when calling the TIMRD routine.
TIMBUF + 1@ contains the lower digit of the year specified
by the Date$ statemenin Basic, TIMBUF+10 contains the wupper

didgit of the year.
Note: The year bytes are always maintained in bank #1

{(main bank). To read the bytes when current bank
is not main bank, use GETBNK routine.

TIMBUF=F832H

73

TIMSET --—~ Set time and date

Deacription
Reset the time and da

Note: Interrupts
of this rou

EZntry. Name
Entry Address

Input parameter

(HL]

(HL]+1
[HL]+2
[(HL]1+3
fHL 1+4
[(HL]+5
[HLT+6
(HLI+7
[(HL]+8
[(HL]+9

OQutput parameter

Registers altere

te on

the calendar clock chip.

should be disabled prior to execution

tine.

Lower
Upper
Lower
Upper
Lower
Upper
Lower
Upper

Day of the week

Month

d

74

TIMSET

735AH (295300D)

[HL]=Pointer to the buffer
where new time and date are
set.

digit
digit
digit
digit
digit
digit
digit
digit

of
of
of
of
of
of
of
of

None

second
second
minute
minute
hour
hour
day
day

(0-9)

(0-5)

(8-9)

(0-5)

(28-9)

(B-2)

(@-9)

(»-3) .

(@:Sun - &6:Sat)
(1:Jan - C:Dec)

flags

NHAPTER 9 SOUND GENERATOR

I.1

MUSIC —~-~- Generate sound
Oescription

The MUSIC routirne is used to generate sound of specified
frequency and length. Interrupts are disabled during th:a
sound routine. If SHIFT+STOP key sequence 1is detected, ROM
aborts immediately.

Note: No data is passed back to the calling routine. No
error processing is generated if an error occurs.

Entry Name MUSIC
Entry Address 73@DH (29453D)
Input parameter [DE]=Frequency. [DE] should be

less than QCQQAGBH
[Bl=Length. "@" is interpreted
as 256. Frequency and length
are interpreted in exactly
same way as the SOUND’
statement in BASIC
Cutput parameter Nonre

Registers altered [(al,[B],[c] and flags

75

CHAPTER 12 SCREEN EDITING

There are two screen editor routines, namely PINLIN and IN-
LIN. In BASIC, PINULIN is used for program inputbt, while data
irnput. (ie: INPUT and LINE INPUT statements) uses the INLIN.

The only one difference in PINLIN and INLIN is the PINLIN
Always scans lines from the position where cursor was lo-
cated whern INULIN was called. This eliminates the prompi
string from being included in the result string.

12.1 PINLIN --—~ Program input

Entry Name PINLIN

Entry Address 4798H (18328D)

Input parameter None

Qutput parameter. Carry éet if PINLIN is aborted
by STOP or “C . Carry reset
if successful. (ie: PINLIN is
terminated by a carriage
heturn). Entered string is
stored in BUF terminated by a
null character.

Registers altered ' All

Description

The PINLIN is a screen oriented editing routine. PINLIN
supports the same cursor and control keys that
Basicsupports.

Control is returned to the calling routine when "RETURN",
"STOP", or Control-C is pressed. When "Return” is pressed
the entered string is passed in BUF. The string is
terminated by a null. The carriage return is not stored with
the entered string.

The PINLIN always begins to scan a logical line from the
beginning. That is if a prompt message was displayed
before the PINLIN was called, the string is also considered
as a part of the entered string. For such application in
that a prompt string is used just like INPUT statement in
BASIC, use instead of INLIN. If PINLIN is terminated by =0
STOP or a ~C, PINLIN returns with carry set. And nothing is
stored in BUF (F5A1H).

76

‘L, 2 INLIN -—-- Data input
Description
Get & line of data from the screen oriented editor.
The routine scans the line from the cursor position prior

to the inlin call as long as the cursor stays on the same
line when the routine is terminated.

Erntry Name INLIN
Entry Address 47AAH
Input parameter Same as PINLIN
Output parameter Same as PINLIN
Registers altered Same as PINLIN

77

CHAPRPTER 11 ERROR HANDLING

11.1

Taking control on error

Some the of the Rom routines decribed in this manual
transfter process control to Basic’s error handler. To
prevent control from returning to Basic’s error handler the
ROM provides a method of keeping control of the process.

To exercise this option the memory location "ERRIMP" F3FEh
(Bookeeping area) must contain the address where control
should be returned to. *

Whern Basic’s error handler in invoked the routine checks the
value at F3FEh. If the value is @ (@ is the Default) Basic
keeps control. However, if the value is not @ control is
transferred to the routine at that address.®

Whern control returns to the calling routine the error
number is stored in register E.

Note: The stack contains garbage when an error occurs.
It is the responsibility of the programmer to
reset the stack pointer to the correct value.

"After control 1s regained atfter an error the
contents of ERRIMP must be reset to 0.

78

“t .2 sample program’ for ERRIMP handling

— e TfTollowing sample program illustrates the use of error
trapping technigque as described in section 11.1. The

routine performs the following.

1) Call routine CSROON

2) Press SHIFT+STOP while waiting for carrier.

3]

; CSRDON call. Use ERRIMP so control
the CSRDOON was

; aborted by SHIFT+STOP.

ERRIMP EQU Q@F3FEH H
L.XT H, 2000D H
DAD 3P H
SHL.D MYSTACK

stack
ILXI H, MYERROR H

- SHLD ERRIMP H
CALL CSRDON H
LXI H, @0@@D H
SHLLD ERRIMP H

MYERROR :
MOV ALE H
CPI 240D H
JINZ OO0OPS H
LHLD MYSTACK H
SPHL H

00PS :

[T

79

comes back to me even when

Error hook entry
Get current stack pointer

; Save it so we can reset

in case of error

Set up my own error handler
address so BASIC does not
take . :
control in case of an

error

All setups where over

Let’s call CSRDON now
Successfully done.

Reset ERRIMP so standarcd
error processing can be
activated fTor further errors

Error during CSRDON

Get error number

Make sure this is I/0 error
Should never happen!

Handle specially

Was I/0 error. Reset stack
pointer

Special handler in case of
internal error here

CHAPTER 12 T MISCELLANEOUS ROUTINES

Block Transfer Routines

12.1 LDIRSB --- Simulate Z80's LDIR instruction
Description

The LDIRSB simulates 2Z80’s LDIR instruction. 0Only one
difference is the LDIRSB alters [A] and flags.

Entry Name L.DIRSEB
Entry Address 6C78H (27768D)
Input parameter‘ Same as Z28@°s LDIR

[HL]=Source address
[DE]=Destination address
(BCl=Length

Output parameter Same as Z8@’s LDIR instruction

Register altered All

80

“ 2 LDDRSB —-—-~ Simulate 280°s LDDR instruction
Description

The |I.DDRSB simulates Z28@°s LDDR instruction. Similar to the
LDIRSB, LODORSB alsc alters [A] and flags.

Erntry Name .DDRSB
Entry Address 6C83H (277790)
Input parameter - Same as 280’ s LLDDOR instruction

[HL]=Scurce address
[DE]=Destination address

[BC]=length
Qutput parameter Same as Z282°s LLDDR instruction
Register altered All

81

CHAPTER 1 KEYBOARD DRIVER . . v uuueeeeeeeeseoansnennnonsneeeennannnnnn 3

1.1 CHSNS ~--- See if key is entered.......ccccieeeenereecccennsanss

1.2 CHGET --- Get a character from the keyboard..........ciieneunennn. 9

1.3 Sample program Of CHGET. ... uveeeoocensoceasonne c et es s ccescanneeeon 3

1.4 BREARX —-- Sense Shift+stop KeYS...ceueereeeeeeeennononeacecncans 5

CHAPTER 2 LCD DRIVERS ccueeeeeeeeeaeeeeeoncacoesaseacsencsoccasnsseses 6

2.1 CHPUT --- Display a character on Console......eeeeieeeeennncannns 6

2.1.1 CHPUT paramelerS. cccceectctecscscsaoscnasasancssscanananes (]

2.1.2 ESC commandsS.....cccecececcencas f e e e et esesecastestsaceccenns 7

2.1.3 Control CharactersS. ... ieieeeeeeeesaacecaccscsaccscsacssassesse 10
2.2 DSPFNK --- Display function keysS..... ettt eeeanceciosoncannns 11
2.3 sSetting function Key String.......cuiivieeeeeeeenenceceonnnneennnnn 12
2.4 ERAFNK --- Erase function key line......c.i it ireienrennneaannn 13
2.6 POSIT ——- LOCAte CUFSOT .t ctteeceaececeecaecenacseasosaasansceseenans 15
2.7 PLOT --- Set a dot on LCD.............. S e cececessssreccsarsesseans 16
2.8 UNPLOT --- Reset a dot on LCD. ...t eeeenane f i ee et e eetssesnaees 17
2.9 Sample program of PLOT and UNPLOT...v.ceeeeeons et eescacasceaenane 18
2.10 How to interrogate the current cursor position................... 20
CHAPTER 3 PRINTER DRIVERS ctcteerececsocssesssacscsssoesssssssoss 21
3.1 PRINT --- Output a character to the printer........ccciecreeeeceees 21
3.2 How to check if printer is8 ready....cui ittt eeeeeeenennans 22
CHAPTER 4...cc0cevevcenns et et e s ecesec et cases st s ectesaaettencasenetenn 23
4.1 GETBNK --- Read a byte from any RAM bank...... e receeecean cececsen 24
4.2 PUTBNK --- Write a byte into any RAM bank..... teecacacsacsaans ™5
4.3 Sample program for different bank accesSS.......eeeeeeeenn e 3
CHAPTER 5 ‘RAM FILE HANDLERS . .t c ettt ecessrsossooscsssssossccsasscsssos 27
5.1 Opening @ RAM £ile...c.iiriteeeeeeeeneeaseceeocoasococsnscononsses 28
5.1.1 Setting up file nNname....... ittt ittt ieeerenesaasacnacnnaans 28
5.1.2 NULOPN === OPEN FILE. .t oeeecececosesscsosccscccscascacscsoscssse 29
5.1.3 FINPRT --- Post processing 0f OPEN.ttt eeeeececnnccnnns 30
5.1.4 Sample OPEN code......... e e e e e eecceceseceserssesaseeareeeeces 31
5.2 Reading a character from a RAM file.......uiuieeeeeeennnnnnnnnnnn 32
5.8 FILOUl - Writing a character to a RAM file.....veeeeeenneneneonnnn 33
5.4 CLSFIL - Closing a RAM file.......ciierenriieeecaeceeanccaasoannns 34
5.5 CLSALL - Closing all filesS......iiieuieeeeectoeecoancenccnnancanens 35
5.6 Sample file I/0 ProOQraM. . cceeeeeeceeecceococecsoseccscacacascnseses 36
5.7 Killing a RAM file........c.cceu... e e ooeseescaceeonesssossnncncense 38
5.7.1 LNKFIL --- Fix up directory structure........ceeeeeeeecaaens 39
5.7.2 KILASC —-- Killing a text file.....ciiiuueeeeeeceoeconannnnns 40
5.7.8 KILBAS --- Killing a BASIC binary program f11e 42
5.7.4 KILCOM --- Killing a machine code file............... ceecena 44
5.8 Renaming a RAM fille.....ieieeeeeeesceeoeecnootsoncacsesosonoaccscses 46
5.9 Search for a RAM file........ e e s eecac st s earssssceccecscsarsassenn 47
5.10 Sample program to search for a file...... . ..ttt eeeceocnoconnnns 48
5.11 Changing maximum file number (MAXFILES).......cciieieeecccccsccns 49
5.11.1 CLEARO - Reset Environment of BASIC

5.12 How to acquire the current MAXFILES value.......cceeceecccccccsoccs 52

CHAPTER 6 PHYSICAL CASSETTE DRIVERSt ctceeccsccaccccaasansans 53
6.2 DATAW —--- Write a byte to cassette...... ..t ieeteernoonaananas 54
6.3 DATAR —-~-— Read a byte from cassette. ... iiiteeeicrecenrencannnns 55
6.4 CSRDON ~-—— Set up cassette for read......c.cieeeeeieeeeceennanances =14
6.5 CWRTON ——- Set up cassette for Write....u.eueereeeeeeencececacanes 58
6.6 CTOFF —---— Turn Off cassette MOtOr..c.oiuiieeeencecenencennnesn ee-..59
6.7 Sample cassette I/0 PrograM.....ccceccccscccecsccncsaasancscsanans 60
CHAPTER 7 PHYSICAL RS232C DRIVERS ...ttt eeeocseseccscnonscacaneans 62
7.1 INZ232 --- Initialize RS—232C POrt....ccttnecceeeecccacnncnnncens p,
7.2 SETSER —-- Initialize RS-232C port using mode string............. 64
7.3 SD232C --- Send a character to RS-232C port.......c.iiiieinnnnn 65
7.4 RCVX --- Check for character is ready in RS-232C queue........... 66
7.5 RV232C --- Get a character from RS-232C queue...... e e es s eeaaean 67
7.6 CLSCOM --- Deactivate RS=232C POrt....cveeesececensnassasacosaoans 68
7.8 DSABLX --- Disable Xon/Xoff control......iiieiieeeeencocencacans 70
7.9 How to enable/disable SI/SO control............. Gt eeceecatcacesens 71
CHAPTER 8 TIME HANDLERS . .. coceeeeecoeoeccecacoaaccccacanoncannanas 72
8.1 TIMRD -—— Read current time and date......cciiiiieiencernrecannna 72
8.2 TIMSET -~~~ Set time and date.........c.... @t eeesceeeeoencasnanens 74
CHAPTER 9 SOUND GENERATOR . .ttt eceeecocacasacasoncssoacassaascsassss 75
9.1 MUSIC ——— Generate SoUNA......tcceveoeccccccscsasascscacasacsasnsssns 75
CHAPTER 10 SCREEN EDITING)

. 10.2 INLIN --- Data input.......... e e et esceccescccccccacasscaacaasean . .77
CHAPTER 11 " ERROR HANDLING. .. ectetescacescsessescsosscssnssascsssssses 78
11.1 Taking control on error.......... Gt e e s e e s eseacsasacsesesaseseanaaans 78
11.2 Sample program for ERRIJMP handling.........cteieeevescacccccannnn 79
CHAPTER 12 MISCELLANEOUS ROUTINES. ... cceeecsccsccanscsosasssoascooces 80
Block Transfer RoOULINeS....ciiieieeeeeeeesoocsenccascsososccoccoocccnces 80
12.1 LDIRSB —--- Simulate Z80's LDIR instruction.....ceeeemececeercanns 80

12.2 LDDRSB ~--- Simulate Z80's LDDR insStructioN.......cceeceecencocnss 81

PC-8300 HARDWARE

CHAPTER 1 LOGICAL SPECIFICATION

CPU
ROM

RAM

MEMORY STRUCTURE

BANK SWITCHING ARCHITECTURE’
LCD INTERFACE

PRINTER INTERFACE

CALENDAR CLOCK INTERFACE
KEYBOARD INTERFACE

SERIAL INTERFACE

CASSETTE (CMT) INTERFACE
BARCODE READER INTERFACE
INTERRUPT FUNCTION

“MODEM INTERFACE

YSYSTEM SLOT

*MEMORY CONTROL CIRCUIT

PC-8300 HARDWARE

1. LOGICAL SPECIFICATION

1.1 CPU

1) CPU to be used
80C85A with operation clock 2.4 MHz

2) Reset action
Power on reset
Manual reset: "Warm Start"—- pressing reset switch
"Cold Start"- pressing reset switch
while holding both the shift key
and the control key down.

1.2 ROM

1) Device
128K bytes of CMOS ROM named ROM #0 split into 4
banks of 32K byte ROM blocks. Bank switching 1is
performed by the I/0O port shown below.

OUT A3H
1 0 .
b o ——— tm————— +-
e et b L Lt e L LT ! RADR2 IRADR1 !
o tmm—————— tm————— +
RADR2 RADR1 Bank Selection of ROM #0
0 0 : Bank #A (00000H-Q7FFFH)
) 1 : Bank #B (0800Q0H-QFFFFH)
1 0 : Bank #C (10000H-17FFFH)
1 1 : Bank #D (18000H-1FFFFH)
ROM IC ADDRESS
to————— + 00000H Device:
{ Bank #A | UPD23C1000 or equivalent
tom———————— + 08000H
| Bank #B |
+———————— + 10000H
! Bank #C | Bank #A should be selected on
Fommmm e + 18000H power-on
i\ Bank #D |

mmmm—mmmmm + 1FFFFH

2) User ROM
One chip (32K bytes) ROM named ROM #1 can be
installed by the user in the vacant IC socket.

The software can switch between the 128K bytes of
standard ROM #0 and the 32K bytes of user ROM #1.

1.3 RAM
1) Standard RAM
8 CMOS 2K bytes chips [Standard 64K bytes (STD RAM)]
2) Option RAM
There is a 32K bytes RAM Cartridge (Bank #3) available
as an external memory upgrade. It can be connected to
the system bus of the PC-8300.

RAM #1 uPD4364G- 15LL type x4
RAM #2 uPD4364G~ 15LL type x4
RAM #3 utilize PC-8206A

1.4 Memory structure

Bank 0 Bank ‘1 .Bank 2 Bank 3
FFFF +~——m=——— + Fm——————— + e ——— +
{ RAM i (Stnd 16K)] IR i
{ 32K | ! b 1
{ (STDRAM) | (Option 16K) | I i
8000 +-—=————~—- + e ———— + $m————— +
| |
7FFF +==—————e + e —— + Fmm—————— + +m—————— +
! ROM 1 1 ROM H { RAM i 1 RAM i
! 32K i 1 32K | | 32K i 1 32K { RAM
I # 0 P #1 P # 2 P # 3 ! Cartridge
0000 +=-=———m——t Fm———m———t fm———m——— + +=—————— + (Protected by
switch)

(Option)
Main Memory

(Option)

(Option)

RAM #2 and RAM #3 can be located both in low or high
address, from O to 7FFFH or high address from 8000H to FFFFH.
This selection can be done by Port access.

Memory can be controlled by the following I/0 port
Fmm b ——t

110100001} ~OUT AlH (161D)
b ———
3 2 1 0
e ——— tm————— tm————— o ———— tm————— tm————— O fomm——— +
} ==== | ==== | -=== | -=—— | HADR | HADR ! LADR | LADR |
| ===} === | ===} ====- 1 2 1 P2 S | H
fo————— o ——— tm————— tm————— o ——— o ——— fm————— tm————- +
LADR2 LADR1 Address 0000-7FFF selection
0 0 Bank #0 (ROM #0)
0 1 Bank #1 (ROM #1)
1 0 Bank #2 (RAM #2)
1 1 Bank #3 (RAM #3)
HADR2 HADR1 Address 8000-FFFF selection
0 0 Standard RAM
0 1 Not used -
i 0 Bank #2 (RAM #2)
i 1 Bank #3 (RAM #3)

‘'In case of using 128K bytes ROM cassette, the following
I/0 port will be used for switching ‘ : .

s Sttt

1100010000 OUT 80H
e &
o ————— +
| { ROMSEL | Alé6 H
i T PR pm——————— tm—————— +
Alé6: Address 16 .
ROMSEL 128K bytes of ROM cartridge select
0 : Deselect
1 : Select

Low Address for 128K bytes of ROM Cartridge

Y et Sttt 4
1100010100 OUT 84H
tmm———t————
7 6 5 4 3 2 1 0
e e +
i A7 | A6 | A5 | A4 | A3 | A2 | Al | AQ |
B i e A L s Rt Sttt Sttt o
A7 - AQ ROM cartridge low address

High Address for 128K bytes of ROM Cartridge

tmm b ———t
11000110001 OUT 88H
fmmm et 4
7 6 5 4 3 2 1 0
Fm +
i Al5] Al4}] Al13] Al2| All} Al10} A9 | A8 |
i Sl A S e S i St

Al5 - A8 ROM cartridge high.address

-Read Data Out of ROM Cartridge

dmmm—
11000{1100} OUT 8CH
. i
7 6 5 4 3 2 1 0
e +
{ D7 { D6 { D5 | D4 | D3 | D2 | D1 | DO |
i S S S S S i St

D7 - DO ROM data

PC-8300 MEMORY STRUCTURE

FFFFH et E N N Se—
|RAM | {RAM | | IRAM |
Po#1 #2101 #3
8000H ot Lt R B e
{STANDARD) (STANDARD) ! (OPTION)
]
]
ROM #0 !
7FFFH s St Sttt ST pm———t $mm——t | Fm———t
i BANK | BANK | BANK | BANK| {ROM | i i HE i
| #D | #C | #B | #A | I #1 | | b ;
0000H e Dttt ST +————+ dmm——t | F=———4
(STANDARD) (ONLY IC SOCKET) {PC-8206A

' PC-8300 Memory Chip Allocation for Expansion

——— - —— ——
[—
-— - —— -
—— ——
—— e b= -

1.5 Bank Switching Architecture

The heart of the PC-8300A is the Intel 80C85, which is an 8-
bit processor whose address bus is 16-bit, Thus the 80C85 can
access 64K of memory at a time. In the PC-8300A, there is a spe-
cial memory access function, memory-bank switching, supported.
Therefore the 64K barrier in the 8-bit microprocessor can be
tricked in the PC-8300A.

The RAM in the PC-8300A is divided into units referred to as
"BANKS". One bank can contain a maximum of 32K bytes of memory,
while the RAM can be expanded to hold a maximum of three banks,
(RAM #1, RAM #2, RAM #3).

RAM #2 and RAM #3 can be located in two different positions,
lower position is from 0000H to 7FFFH and higher position is from
8000H to FFFFH. RAM #3 is a detachable RAM cartridge. The bank-
switching is executed every 32K bytes, therefore it is impossible
to access half of RAM #1 and half of RAM #2 at the same time. In
otherwords, one can not set up the following memory allocation,
the lower half of RAM #2, 8000H to BFFFH, and the higher part of
RAM #1, COOOH to FFFFH as 32K of memory. -

RAM #2 and RAM #3 can be protected by a. "PROTECT SWITCH".
The switch for RAM #2 is located on the rear of the computer. The
switch for RAM #3 is located on the side of the cartridge. RAM #1
does not have a protect switch. When the protect switch is ON,
the RAM bank can not be used. The PC-8300A uses the highest RAM
area, F380H to FFFH, to save the current status of the PC-8300A
every time.

All of the RAM chips are backed-up by battery. All of the
data and program files in RAM will be kept, even if the power
switch is turned off. If one makes a special utility for the 2nd
ROM or a special RAM configuration, one has to consider this
Power—-down sequence. Refer to Chapter XX, to understand the
Power-off trap in ROM #0.

1.6 LCD Interface

1) Driver to be used
HD44102B (10 chips) Segment drivers
Display RAM = 200 bytes

Selected by Port A/B of PPI
(81C55)

HD44013B (2 chips) Common drivers

2) LCD to be used
LR-202C ees.. 240 X 64 dots

3) Display function
1. No of display characters
40 characters per line by 8 lines
(Display duty = 1/32)

2. Characters structure

6 x 8 (Both alpha numeric characters and
Graphic characters)

3. LCD I/0 address, I1/0 port
Command write in to LCD
‘Status read out from LCD

Display's ON/OFF
LCD can be separated by 10 blocks and can
switch display (ON/OFF) in each IC block

The LCD is divided into the following IC blocks. Each block
has its own Segment Driver with a 200 byte Display RAM. Each IC
block can display 50 by 32 dots, however B5 and B10 display only
40 by 32 dots. One may write dots on the remaining area of the
Display RAM of B5 and B1l0 without receiving an error, but the
dots will not appear on the screen.

Fm————— Fmm——— Fm———— Fmm———— Fmm———— +
{ Bl | B2 { B3 | B4 | B5 |
o o o Homm e o —— + 64 dots
{i B6 | B7 | B8 | B9 | Bl0o |
F—————— Fomm———— e e ——— +
240 dots

The Display RAM may be regarded as the VRAM in the tradi-
tional desk top personal computer. Setting a Bit On/Off in the
Display RAM means setting/resetting a dot on the LCD.

l1.6.1 I/0 PORT RELATED TO LCD

Block Select —--- PPI 81C55 PORT A/B

- —— - - - — - —— ————— " S ——— — ——————

{PA7 |PA6 I PAS{PA4|PA3|PA2IPALl|PAOD] OUT B9H (185D)

P X X1 X1 X! X1 X {PB1iPBO! OUT BAH (186D)

PAQ to PA7 are associated to Blockl thru Block8 and PBO, PBl to
Blocks ‘9,10 respectively.

0 = Not Selected / 1 = Select

Description: Selecting an LCD Block (same as selecting a Seg-
ment Driver IC) which one wants to access. One cannot select two
blocks at a time.

1.6.2 LCD COMMAND SET

There are 5 commands to control the Segment Driver IC. These
commands are executed via PORT FEH (254D), the LCD Command/Status
Port. : .

Display ON/OFF

msb 7 6 5 4 3 2 1 ® 1sb
S T S S TS
{916}V 1 41141141010 0 DISP | OUT FEH (254D)
L T T WURPEIS BB RREIY ST EERELNE LN SRS S S S

DISP: Display ON/OFF
@ = OFF
1 =ON

Description: DISP decides whether the data in the Display RAM is
displayed on the screen. This port does not effect the contents
of the Display RAM.

Set Address Counter

{BIT7 |BIT6!BITS5|BIT4{BIT3|BIT2!BIT1!BITO! OUT +£8i—2465+
et e et 2 FEY Cz SC/D)

Select PAGE

BIT7 BIT6

Page®
Pagel
Page2
Page3

PrHres
HPreRr e

OFn means "OFfset counter" in each Page, n musﬁ be from 0 to
49.

The Display RAM is divided into 4 (0 to 3) pages and each
page contains 50 bytes (0 to 49) as shown below. The Segment
driver has a PAGE counter and an OFFSET counter. The counters are
set by this command. The OFFSET counter works as the loop coun-
ter, it's value from 0 to 49. The OFFSET counter is automatically
Incremented/Decremented after read/write operation. The counter
mode is described below. The PAGE counter is not changed by the
read/write operation.

OFFSET Counter

Page 0(————————————————— >49 (39 if B5/B10)
counter e e e et Bt +
{1sb| i
00B i I Page 0 }
imsb| '
b e e +
1sb| |
01B ! | Page 1 i
imsb| |
b +
i1sb! H
10B] | Page 2 |
imsb! i
B s e T T T +
l1sb! H
11B | | Page 3 '
imsb| i

Set Starting Page

msb 7 6 5 4 3 2 1 0 1lsb
B S daiai e T e e a
1sPG1ispPG2} 1 {1 {1 11 414 1 OUT FOH—{240D)
DT T R o r e A A b o FBH (25:.“))
Specify the Starting Page to be displayed on the LCD.
(1/32 Duty)
SPG1l SPG2 Order of Display Page
0 0 ---=0->1->2->3
0 1 ————1=->2 =-> 3 =>0
1 0 ————2=>3 -=>0 ->1
1 1 ————3 -> 0 -> 1 -> 2

Description: The LCD block is divided into 4 pages cor-
responding with the Display RAM. The combination with the Page of
the LCD Block and the Display RAM page can be changed. The "Set
Starting Page" defines the mapping between the Page in the Dis-
play RAM and the Page of the LCD Block.

Select Address Counter Mode

msb 7 6 5 4 3 2 1 ® 1lsb
T D o T T e et

foet o4 141143114014 1 1u/Di OUT #4H—240D)
i it St Satat T R FEA (2346)

Up/Down (Direction of counter)
® = Down count
1l = Up count

Description: Set OFFSET Counter Mode.
This address counter loops back to initial by 50 counts
and it is automatically incremented or decremented after access-
ing display data.

Read Status —--- Read the status of the Segment Driver

msb 7 6 5 4 3 -0 1sb
o Fm———— Fm——— tm———— +
'BUSY | UP/DOWN | ON/OFF | RESET | XXXXX! -IN—FOH (240D
O Fom———e o Fm—— + EEY (254 D)
Bit 4 ===~ Status of the RST pin
0 Normal
1 RST is low level
Bit7 (BUSY) equals 1 at the same time
Bit 5§ —-==-= Display
0 Display OFF
1 Display ON
Bit 6 -=--—- Mode of Addresé Counter
0 Down counter
1 Up counter
Bit7 .
0 Others . : '
1 " Executing in F1H, OQOUT FOQH, or OUT F1lH

Write/Read Display Data

s S T e s A &
iD7iD6|D5{D4{D3{D2{D1!D0O| IN/OUT BiH—(241D)
s st S e s FoH (2469)

Description: Reads the data from the Display RAM that is
pointed to by PAGE and OFFSET counter. If one wants to read some
portion of the display RAM, use this command after Setting the
PAGE counter and the OFFSET counter by the "Set Address Counter”
command and the "Set Page Counter" command. Note that one dummy
read must be done before using this command in order to get cor-

rect data.

1.6.3 SOFTWARE FOR THE LCD

This section describes how to handle the LCD without reading
the routines stored in ROM#0 and how to maintain the bookkeeping
area for the LCD in the RAM.

1.6.3.1 How To Initialize the LCD
Initialization Process

1. Set up Address Counter, usually page 0, offset 0
2. Set up Offset Counter Mode

3. Set up Starting Page

4. Select Display On/OFF

The following program initializes the LCD's Segment drivers as
shown.

PAGE COUNTER = 0
OFFSET COUNTER =
UP COUNTER MODE.
START ON PAGE = 0
DISPLAY ON

0

NOTE:

Whenever the power is turned on, the LCD is initialized by
the reset pulse of the hardware. At that time, the Display is
turned OFF, the Offset counter is set to count up mode. Other
status is not determined.

ROM #0 always re-initializes the LCD as Display ON, Starting
Page = 0 and Offset counter count up mode when a character is
displayed. ‘

SAMPLE PROGRAM FOR LCD INITIALIZATION

Initialize Segment Driver

~s we we

~—- Equates ---
PORTA EQU B9H
PORTB EQU BAH

LCDCOM EQU FEH
LCDSTAT EQU FEH

LCDINIT:
DI : Inhibit disturbance for Port A/B
CALL SELALL ; Select all Segment Drivers
CALL LCDBUSY ; Wait until LCD becomes ready
XRA A ; .
ouT LCDCOM : Reset address counter
CALL LCDBUSY H
MVI A,b3BH ;: Offset counter UP mode
OUT LCDCOM :
CALL LCDBUSY H o
MVI A,3EH ; Set starting PAGE = 0
OUT LCDCOM H ‘ ‘
CALL LCDBUSY :
MVI A,b39H ; Display ON
OUT LCDCOM H
LCDBUSY:
; Wait until LCD becomes ready
IN LCDSTAT . ; Get LCD status
RLC ‘ + Move MSB to CF
JC LCDBUSY ; Wait if LCD is busy
RET
SELALL:
: Select all Segment Drivers
MVI A,FFH H
OUT PORTA : B9H
IN PORTB ; Get current status
x ORI 03 ; Select block 9,10
oOuUT PORTB H
RET
END

1.6.3.2 How To Write A Character

Writing a character on the LCD is performed by writing some

Bit patterns into the Display RAM of the Segment Driver. The

basic s

1.

equence of writing a character on the LCD is as follows:

Select LCD Block {(Segment Driver) which one wants to PUT

a character.

Ne e we ws “e N

2. Set the Offset counter mode, usually to the UP mode.
3. Set the Address where the 1lst byte should be written.
4. Write the Bit pattern

5. Set Starting PAGE counter

6. Insure Display ON.

"The following sample program shows how to write a character
on the LCD. This routine updates the pointers which are used by
the System ROM, ROM #0, to maintain the system circumstance.

SAMPLE PROGRAM TO WRITE A CHARACTER ON THE LCD
This program performs the same function as the following
BASIC program.
10 LOCATE 0,0
20 PRINT "A"
30 END
CSRY EQU F3E6H : Cursor Y position (1-8)
CSRX EQU F3E6H ; Cursor X position (1-40)
LCTEY EQU FEBY ; Character Y position (0-7)
LCTEX EQU FEBA ; Character X position (0-39)
PORTA EQU B9H ;: Segment Driver Select Port Def“75
PORTB EQU BAH H Dee: 136
LCDCOM EQU FEH ; LCD command Port Dec 254
LCDSTAT EQU FEH ; LCD Status Port Decs 264
LCDIO EQU =988 FFH ; LCD data I/0 Port Dec: ¢5
ORG F000 ; 61440D
LOCATE:
; Locate 0,0
LXI H,0101H ; To set cursor position
SHLD CSRY H
LXI H,0000H
SHLD LCTEY
PREP:
1 —— Select Block 1 to write (1,1)

DI : Inhibit disturbance for Port A/B
.; of the 81cC55. DI is not necessary
: if the data port of the 81C55 is
: not changed, but you must consider

MVI
ouT
IN

ANI
OouT

CALL
MVI
ouT

CALL
MVI
OuT

CHROUT:

WRITE:

.8 Me me me %o ~p

ENTRY:

LXI
MVI

CALL
MOV
ouT
INX
DCR
JN2

LXI
INR

LXI
INR

(HL]
(cl1 =

A,01H
PORTA
PORTB
11111100B
PORTB

LCDBUSY
A,0Q
LCDCOM

LCDBUSY

A,00110010B

LCDCOM

H,FONTA
C,06H

e me we wh we we

e w3 w2

r

r

e we

other INT routines
Select Block 1

(WS)

Get current status (770)
Deselect Block 9/10

(196)

Wait until LCD is ready
Page 0, Offset 0

(254)

; Offset counter UP mode
(254

Get start address of Font A
Set Font size

Write data to Display RAM of LCD

= Font Start address
Length of Font

LCDBUSY
A,M
LCDIO

H

c

WRITE

- wa

H,CSRX
M ;

H,LCTEY
M ;

Set starting Page

MVI
OouT
IN

ORI

A,FFH
PORTA
PORTB
000000118

.
r
.
’
.
L4

Wait uhtil LCD*ié'ready
Get font pattern to send
Write to display RAM of LCD

Update Pointer
Update counter

s me N§ we

To send next pattern. Offse
is Auto increment Mode, so
care about the Offset count
Update Cursor Pointer

No check for the end of line

’
.
14

in this program

3
r
.
r
.
r
.
r

Select all block

(255)
t counter

we don't
er.

LCDBUSY:

FONTA:

ouT

CALL
MVI
ouT

MVI
ouT
EI

RET

IN
RLC
JC
RET

DB
DB

END

PORTB : (l u)

LCDBUSY ; Wait until LCD become Ready
A,3FH ; Starting page 0

LCDCOM : (25%)

A,00111001B : Insure display ON

LCDCOM : (254)

LCDSTAT ; Get LCD status (254)
; Move MSB to CF
LCDBUSY ;

3CH,12H,11H : Font data for "A"
12H,3CH,00H ;

1.6.3.3

How To Set/Reset A Dot On The LCD

The sample program shown below explains how to set/reset a
dot on the LCD. it does the same function as the following Basic

program.

100
110
120
130
140
1590
160
170
180
190
200
210
220

PORTA
PORTB
LCDCOM
LCDSTAT
LCDIO

PSET:

PSET1:

CLS

FOR Y=9 TO 22

FOR X=60 TO 80
PSET (X, Y)
NEXT X
NEXT Y
FOR Y=14 TO 18

FOR X=64 TO 76

PRESET(X.Y)
NEXT X
NEXT Y
END
SAMPLE PROGRAM FOR SET/RESET DOT
EQU BSH ¢ LCD block select
EQU BAH H
EQU FEH ; LCD command
EQU LCDCOM : LCD status
EQU FFH : LCD data I/0
DI : Disable all interrupts to keep
; current block select
XRA A ; To set SET flag
STA SR ;: Set/Reset Flag
LXI B,140EH ; [B]=20 X Count, [C]=14 Y Count
LXI H,0A09H : [H]=X Position, [L]=Y Position
PUSH H ; Save (X,Y) Position
PUSH B ; Save (X,Y) Count
CALL MAIN :
POP B ; Restore (X,Y) Count
POP H ;: Restore (X,Y) Position
INR L : Advance Y position
DCR C ; Bump Y counter
JNZ PSET1 H

PRESET:

PRESET1:

e we ne we
~
el

DOT:

RESET:

MVI A,FFH
STA SR
LXI B,0CO6H
LXI H,0EODH
PUSH H
PUSH B
CALL MAIN
POP B
POP H
INR L
DCR C
JNZ PRESET1
RET
X POSITION
Y POSITION
X COUNT
Y COUNT
PUSH H
CALL DOT
POP H
INR H
DCR B
JNZ MAIN
RET
CALL LMAIN
LDA SR
ORA A
JNZ RESET
MOV A,E
ORA D
JMP DISP
MOV ALE
XRI FFH
ANA D

.
’

e %o mp we % e o

-

“e %o we we ne 4o

e
« S e

-

e w8 W

e we we

.
r
.
’

»
’

To set SR flag

Set Unplot Flag
[(B]=12, [C]=06
({H),[L])=(14,13)

Save X,Y Position
Save X,Y Counter

Restore X,Y Counter

Restore X,Y Position -

Advance Y position
Bump Y counter

Save X,Y Position
Plot/Unplot a dot at
Retrieve Position
Advance X Position
Bump X counter

Get SR flag

See if Set/Reset?
Branch if Reset
Get MASK pattern
[A]= data to write

Get MASK pattern
Reverse MASK pattern
{A]l= data to write

(X,Y)

DISP:

MOV
CALL
DI
MVI
ouT
IN
ORI
ouT
CALL
MVI
ouT
CALL
MVI
ouT
EI
RET

LMAIN:

D,A
WRITE

A,FFH
PORTA
PORTB
00000011B
PORTB
LCDBUSY
A,00111111B
LCDCOM
LCDBUSY
A,00111001
LCDCOM

-~

~e

LYY

~e ~9 ~s

~o me

; ENTRY [H]= X Position in
: [L]= Y Position in

PUSH
PUSH
- CALL
~"CALL
CALL
POP
CALL
POP
CALL
RET

WRITE:

-
r
-
r
-
[4

REG: A AND

CALL
MOV
ouT
NOP
RET

ENTRY: NONE

CALL

H

H .
SEL2 -
SETADR
READ

H
GETMSK
H
SETADR

FLAGS

LCDBUSY
A,D
LCDIO

REG: A,D AND FLAGS

LCDBUSY

Select all blocks

.
14

See if LCD is busy

: Starting Page 0

~e

-0

; Display ON

Block-1
Block-1

Save X,Y position

Select Block-2 : ‘
Set address of display RAM
Read the LCD

Retrieve X,Y position

Get MASK pattern

Retrieve (X,Y) position

FUNC: OUTOUT ([ODAT] TO LCD

e me wme we wo

-
r

Get Data to write

Must be EI at final

EXIT: [D]=CURRENT DATA IN DISPLAY RAM

Wait until LCD becomes ready

IN LCDIO ; Dummy read-must do to get
; correct data
CALL LCDBUSY

IN LCDIO : Get valid data
MOV D,A : Save it
RET H

GETMSK:
ENTRY: [L]= Y POSITION

: EXIT: [E]= MASK PATTERN

REG: A,L,E AND FLAGS

MOV A,L ; Get Y position
ANI 00000111B H :
MOV L,A ; Set counter
MVI A,99B ;
Jou
MSK1:
RLC H
DCR L : Bump counter
JP MSK1 ; Branch if not finished
MOV E,A : Save Mask pattern
’ RET : ;
SETADR:

ENTRY: [H]= X POSITION ON BLOCK-2
(L]= Y POSITION ON BLOCK-2
FUNC: SET ADDRESS

e “e wme “=» wo

REG: A,H,L AND FLAGS

MOV A,L ; Get Y position

RAL ; Move Bit4/3 to Bit7/6
RAL H

RAL H)

ANI 11000000B . ; Get page _

ORA H : [Al=Page and Offset
MOV L,A ; Save it.

CALL LCDBUSY ; Wait until LCD is ready
MOV A,L ; Retrieve address

OUT LCDCOM H

RET

LCDBUSY:
ENTRY: NONE

FUNC: WAIT UNTIL LCD IS READY

EXIT: NONE

e W) wme N we we =

REG: A AND FLAGS

IN LCDSTAT : Get LCD status
RLC : Set Busy FLG to CF
JC LCDBUSY : Wait if LCD is Busy

RET

~e

SEL2:
; SELECT BLOCK-2

REG: A AND FLAGS

DI :
MVI A,00000010B ; Select Block-2
OUT PORTA H
IN PORTB H
ANI 11111100B :
OUT PORTB :
RET H
SR: DB 00 ; Set/Reset flag
: O0=Set/FF=reset
END

HOW TO DEFINE A CHARACTER

This section describes how to define the User Definable
characters in the PC-8300A and how to store them in a portion of
RAM where ROM #0 can use this new font. BASIC commands will be
used to produce some of the operations.

STRUCTURE OF A CHARACTER AND HOW TO DEFINE IT

One character consists of 6 * 8 dots. The vertical 8 dots are
handled by a byte. In order to define a character, one nust
define Sequentially the 6 bytes of data. The data 7CH (124D), 12H
(18D), 11H (17D), 12H (18D), 7CH (124D), and 00H (0D) define "A"
as follows.

: CG pattern for "A"
DB 7CH,12H,11H,12H,7CH, 3CH, 00H

DATA PATTERN FONT PATTERN
0 1 2 3 4 5 0 1 2 3 4 5
1sb +-——4———4———dm——pmm e pm e} dommm bbb m b ———}
2 +06:+01t 1010401 ! i Po* i : '
e i e e s it e Sttt ittt Sttt
1 1011410141t 141014% 0% d Pox o Poxod ' i
it St it St s St 2 et T T R e £
2 {110 +0t01!1} 0 Po*d i | Pox o |
dmm e — e — b —m— b ——— dmm e m— e —p———b——— 4
3 {11000 1:!11} 0 . i i A i
s e et S S s it et St e et 2
4 +1+1+14+v14v1% 00 L L O T i
t——mtpmmm bbb — =} e et et R TR R
5 {11001 04{1} 0] Poxo | ' Po* |
e et Rt e s i e i s Sttt Sttt et
6 {1 +041 01011140 boxod ' i Po* o '
e S S e et TR e e s
7 {01 0410101101 0 i ' ' | | ' i
msb +—=——F———F———b———f———p———4 Fom e ——————+

HOW TO STORE ONES OWN CG

This section explains how to store USER CG into RAM, which
can also be used by ROM #0. :

Assume that one has to define fonts as described in the
previous section. Each Font consists of 6 bytes. Font Data has

been BSAVEed in the RAM file named "FONT.CO", whose start address
is YYZZH. :

One can make "FONT.CO" in the following sequence.

1. Reserve area for "FONT.CO" by the CLEAR command in
BASIC. ‘

CLEAR <length>,<startaddress>
2. Load "FONT.CO" into RAM
BLOAD "FONT"
3. Register the top address of the CG

POKE 65216D, <Start Address (High Byte)>
POKE 65215D, <Start Address (Low Byte)>

After this sequence, ROM #0, for instance, BASIC can use the new

defined CG.
AVAILABLE SYSTEM WORK AREA

This section explains how to use the system Character
Generator and how to use the available System work area.

HOW TO USE THE CG IN THE SYSTEM ROM

One might want to use the CG of ROM #0 instead of making a
new CG by yourself. The Character Generator characters whose code
is from 20H to 7EH, are stored in the highest portion of ROM #0,
from 78B7H to 7B37H. Each character consists of5 bytes. The
sample below explains how to get the character pattern and how to
expand it into the standard shape, 6 * 8 pixels. Assume that this
program is written to be stored as a CO file in the RAM files and
will be executed with ROM #0.

;ENTRY [A]l= character code (20H TO 7EH)

EXPAND:

NEXT:

SUI
MOV
ADD
ADD
ADD
MOV
MVI
LXI
DAD
LXI
MVI

MOV
STAX
INX
INX
DCR
JNZ
ORA
STA
RET

.5H

:vgum:nm:u Dwwmwaoaa»ap
> z]
= 9]
X
)

-
™
=
v]
+
wn

e ME e NE ME e NS e e we WY

e e We Ne me W wp we

*x2
x4

[C] offset from base of CG

Set font data length

Get font data

VRAM AREA IN THE SYSTEM WORK AREA

The area from FBCOH to FE3FH in the RAM is reserved for VRAM
area of the LCD. It is divided into two portions. Each portion
can hold the character codes displayed on the lcd at a time. Each
portion has 320 bytes. The attribute data is not saved in this
area, only the character code is stored.

l. FBCOH - FCFFH : Keep previous Page
; in TELCOM
2. FDOOH - FE3FH : Current displayed

: character is saved

The character code of the character displayed at the location
(1,1) on the LCD display is stored at FDOOH.Therefore the code of
the left-lowest character (40,8) is stored at FC3FH. This rule is
used in the standard program in ROM #@. For instance, BASIC,
TEXT, TEXT, TELCOM use that area like a VRAM in the traditional
desk top personal computer. The menu screen also utilizes that
area, but you can use the area too. The data in this area does
not effect the information on the LCD display, as far as you use
your own display routine.

REVERSE THE ATTRIBUTE OF THE SPECIFIED AREA

ROM #0 has the reverse attribute table in the Work area. The
attribute data is kept in the area from FA60H (64096D) to FA87H
(64135D). Each bit represents each character Box on the LCD.
Therefore only 40 bytes can handle the attribute of the whole LCD
screen. When the bit is OFF (0), it shows that the character Box
is displayed in normal mode. Likewise when the bit is ON (1), the
character box is displayed in reverse mode. The relation between
the Attribute bit and the Character Box is shown below. The rela-
tion of the reverse attribute bit and each character box follows.

t————— ——— e +
e +
1(1,2)1(2,2)1(3,2)1 1(39,2)1(40,2) !
ittt +
e S
1(1,8)1(2,8)1(3,8)1 1(39,8)1(40,8) 1
e +
FA60H Bit® (901,1)

Bitl (02,1)
Bit2 (03,1)
Bit3 (04,1)
Bit4 (05,1)
Bit5 (06,1)
Bité (07.1)
Bit?7 (08,1)

FA61H Bit® (99,1)
Bitl (10.1)
i !

FA87TH Bito (33,8)
Bitl (34,8)
Bit2 (35,8)
Bit3 (36,8)
Bit4 (37,8)
Bit5 (38,8)
Bité (39,8)
Bit7 (40,8)

1.5 Printer interface

Printer interface is the 8 bit parallel interface The
Centronics compatible interface on the PC~8300A uses a 26-pin.
The following is the I/0 port of the printer interface. It sets
the data on the port A of 81C55 and inputs the control signal
from the printer to port C. Port A takes output. Port C takes in-

put.

I/0 Port For Printer Interface

Port A--- Data transmission (OUTPUT) to printer
lsb 7 6 5 4 3 2 i]
e T T e i ettt S PR
{PD7 iPD6é {PD5 |PD4 {PD3 PD2 |PD1 (PDO | OUT B9H (185D)
B s T e s R Tl
Bit 7 -- Bit 0 Printer data port
Port C--- BUSY, SLCT Signal Read
msb 7 6 5 4 3 2 1 0 1lsb
+———— tm—— B e S tm———— tm———— +
] XXX] XXX] XXX | XXX } XXX |BUSY |SLCT | XXX | 1IN BBH
(187D) . o
- tm———— fm———— tm———— = = Fm———— Fm——— +
BUSY =--- 0 Printer READY
1 Printer BUSY
SLCT --- 0 Deselect
1 Select
SCP (System Control Port) —--- STROBE Output Port
msb 7 6 5 4 3 2 1 0
R i e e S s it
{ - { -1 PSTB} -} -4t -1 -1 -1 OUT 90H
e —————— ¢
PSTB —---- @ Strobe OFF

1 Strobe ON

BASIC THEORY OF WRITING DATA TO CENTRONICS

The basic sequence to write data to the Centronics printer is

as follows.

1. If the Printer is busy, wait a while. Otherwise go ahead.
2. Output a byte to the data line and hold it.

3. Change the strobe level to low.

4. Wait an adequate duration holding the DATA.

5. All has been done, then finish else repeat from (1).

TIMING CHART

Parallel _ XAXXXXXKXXXKXKXXX

DATA ->IT1i<~- =>} T2 i<~
_______ + A e o e e o e o o e e e e o
DATA ->} T3 i<-
STROBE pm———— +
dmmmm———————— +
BUSY | o
______________ + [R

T1l, T2 >= 1.0 uSec
1.0 uSec < T3 < 600uSec

Refer to the printer manual for the actual duration of Tl to T3.
SOFTWARE SPECIFICATION
HOW TO WRITE A BYTE TO THE PRINTER

The program below explains how to send a character to the
Parallel port{(the same as the BASIC command LPRINT "ABCDEFGHIJ").

'60000D

i ~—EQUATES--

SCP EQU 90H ; System Control Port
PORTA EQU B9H ; Printer Data Port
PORTC EQU BBH : Printer Status Port

SYSSTAT EQU FE44H SCP status

START:
LXI
MVI

PRINT:
IN
ANI
XRI
JNZ
DI
MOV
ouT
LDA
MOV
ORI
ouT
MOV
ouT
MOV

WAIT:
DCR
JNZ
EI
INX
DCR
"JINZ
RET

BUF: DB
DB

END

1.6 Calendar clock interface
It contains LSI

H,BUF
C,10+2

PORTC
6
2
PRINT

A/M
PORTA
SYSSTAT
B.A
001000008
SCP

A,B

SCP

B,03H

WAIT

H
Cc
PRINT

' ABCDEFGHIJ"

13,10

ports are assigned.

Command data out port

e ms we we NE WE WS e W v Ne N N ~e we

e Mo e Ne e wo =

(uPD1990AC)

Set PTR
Set data length

Get printer status

Strip BUSY,SLCT bits
See if ready

if not, then wait
Inhibit disturb for PortA
Get character to print
Put data on the DATA line
Get SCP status

Save it

Set STROBE

Set appropriate value for
; specific printer

Point to next

for clock. The following I/O

e s :
I1011I1001I OUT B9H (185D)
fmm e
7 5 4 3 2 1 0
dmm bbb +————- o ——+

I -IT~-I-ICDO ICCKIC2ICLTICOTI

e S e e $mm——— R e Sl S

c2,Cl,co Command out port
CCK shift clock

0 OFF

1 ON
CcDh@o Data out port

Starting value is 05H

Command strobe to clock

e ——t
I1001I0000I OUT 90H (144D)
————t————
7 6 5 4 3 2 1 0
il b et e s i &
I-I-I-ITSTBI-I-1I-1I-1
it bl e s A s it &
TSTB Command strobe to clock
(1] Strobe OFF
1 Strobe ON
Data from cloc
t————t——— . E _
I1911I1011I IN BBH (187D)
e i 5

7 6 5 4 3 2 1 0

o ————¢
I-I-I-I-I-I-I-ICDII1I
R S et TR EE St PR e e
CDI Clock data input data

1.7 Reyboard interface

Keyboard is sensed by the soft scan method.

PC-8300A KEYBOARD MATRIX

Keyboard Data Port

KD® KD1 KD2 KD3 KD4 KD5 KD6 KD7
! ! ! ! : ! ! !

+=——t -t Fm——t F———F == F+———4 F$———F +———+

+

It outputs Low
signal to port A (of 81C55) and a part of port B (PBO)
(OUT B9,0UT BA). It sense the pressed key in IN ES8H.

in order

Rey Strobe Port

P Z 1= X i-{ C -l V i-{ B {-I N {={ M {-| L {-- PAQ

i=- PAl
i=— PA2

K
+———+ tm—=F F=——t Fmm—t Fmmet tommmd fmmmd fm——t

I

t
1
]
i

{
1

U

]
i

+===t +=——F +-——t ==+ F$———F +———F F=———t f———it

G

4==—+ ===+ +=——t Fm—md Fm——t fmm—f fm——t i
T

{ -
1 1

R

i
t
1

E

1
1

W

t
]

Q

+=—=F F=—=4 tmmed tommemt fommmt Fmmmd fmmmd fmm—
4=+ +-—=4 F===t Hm=—t Fm—mt fommed dm—mmt Fm——t
t==—4 F———F F=—=t ==t ==t Fm——t F—m—} F———t}

o <
< <
[*1} o1}
—— 4 4+ - -
I |
—~ | | ~ oo
b
| |
w4 4+ -
I {
?/“ -~
RN
——— I
| |
—_——-— 4+ - -—
| |
S B et
—— t ———
| |
cl»l.". .".||||
s
—— 4+ =
| !
—— 4 + - —
| |
||\“nt“$4
—— 4+
[|
..lnl.“. .".vlll
< @“nln#a...
—— + -
| |
—— 4 o .
| |
[+ 7] | = N
H
| |
—_—— 4+ — -
I |
O i o=
[
—— + -

represent

PAS
"PA6

1
1
1
1

{PST
{ INS|

. . . i
et Fm——d dmm—t pmm—t pom——t dm——d Fmm—d Fmm—t
- | RET!

OUT B9H (185D)
OUT BAH (186D)

{ SPC
s i T T e e

ESC
0 1lsb

i e R Db th St S S n o

KDn (KD7,KD6,...,KDO)
Input port for the keyboard.
1KS8|

s Sttt Sttt Sale el R R SR

{
(
TAB
1

Please refer to the following sec-
X

]
1
i
1
]
]
t
1
]
1

H

1

i

i
Also,

~5{-————————+-——|STP|-- PA7
X

+-——+

+——=+
The abbreviation PAn (PA7,PA6,...,PAQ0) and PBn mean the bit

X

1
’

-41-!

d———t tmm—t dm——t et ==t

1

1 .
{SFT|-|CTL!-{GRH|-=-=-==|{CAP|---—-————+-————4———- PB0

X

dmm—t Fmmmt Fmm—d fmm—t et
!

KREYBOARD Strobe

=341
| X

KS0

6
X

LY

X

b=t Fm——t bt
{KS7{KS6{KS5{KS4|KS3|{KS2{KS1|KsS0|

s et i it

H

H

msb 7
KS8

—1i-1F-2!-}

tmm—t Fmmmd dmmmt Fmmmt femmemd fmmmd fmmmd f———t
dmm=t Fm——t ot Fommep pmm—t tommmd fmmmd fmm—d
pmmmt Fmmmt dmm—t pmmmt pmm—d dmm—d Fm——d F———t

KEYBOARD STROBE ----Port A/B of the 81C55

of PORT A and B of the 81C55.
tions about the I/0 ports.
the bit of the KEYIN,

I/0 PORT FOR THE KEYBOARD

tm——t ===+ ==t
$m——t Fm——t ===+

I
P9

1
i

® = Strobe OFF
1l = Strobe ON
KEYIN ---- Read Keyboard Data

msb 7 6 5 4 3 2 1 0 1lsb
it Sttt e S T e T &

{RD7{KD6 |KD5{KD4{KD3{KD2{KD1|KD0®{ OUT EBH (235D)
e Sttt St e s S 5

KD7 ... KDO KEYBOARD Data
® = Depressed
1 = Not Depressed

Read the strobed column of the keyboard. Please refer to the
Key Matrix shown earlier to understand the relationship between
KDn and the Key on the Keyboard.

KEYBOARD SCANNING

Key scanning must be performed by software. It can be done
by the interrupt, RST 7.5, the RST 7.5 Pin of the 80C55 is con-
ne¢cted to the TP Pin (No. 10) of the calendar clock (uPD1990).
This interrupt occurs every 4 msec in the standard systenm.

SOFTWARE FOR KEYBOARD OPERATION

HOW TO READ THE KEYBOARD
Basic keyboard sequence:

1. Turn on the strobe to the desired column you want to
read.

2. Read the column from the KYIN port.

3. Strobe OFF.

The following sample program shows how to read the keyboard in
detail. The program reads every column and saves the data into
the KYBUF (Keyboard Buffer).

Read Current Keyboard Status
Note: Make sure Keyboard strobe is

not disturbed while reading the keyboard.
Also take care of the other interrupts.

“~e ®mes o N8 o

.
14
-
r

EQUATES

PORTA
PORTB
KEYIN

READKEY:

key

EQU
EQU
EQU

ORG

LXI
MVI
ouT
IN

ANI
ouT

IN
STAX
IN
ORT
ouT
MVI

B9
BA
E8

FOOOH

B,KYDATA

A,FFH

PORTA
PORTB

FEH

PORTB

KEYIN
B
PORTB
01H
PORTB

A,11111110B

Keyboard strobe Port

~e ne we

Keyboard data port

: Get PTR for buffer
Disable normal key strobe

Get PortB Status
; SET B® = OFF
; Activate Strobe for Special

Read keyboard

: Save data

Get status of Port B
: SET B® = ON
:Strobe off

-
’

NOMAL:

KYDATA:

INX

outT
MOV
IN
STAX
MVI
OuT
MOV
RLC
Jc
RET

DS
Ds
DS
DS
DS
DS
DS
DS
DS

END

PORTA
D,A
KEYIN

A,FFH
PORTA
A,D

NOMAL

PP RRPRPRRR

~e

NP Ne MO N6 Ve N N~ N

~e

; Prepare PTR for key
: buffer for next data
: Strobe on
Get data
;: Store it

Strobe off
: Retrieve strobe data
: Strobe for next column

: All done return to caller

PBO column

PAD

PAl

PA2

PA3

PA4

PAS

PA6

PA7

Be careful that Bit OFF
means key is depressed

1.8 Serial interface
The PC-8300A has three channels of Serial Interface, RS-
232C, SIOl1 and SIO2. UART (6402) and PPI (81CS55) control the

Serial Interface. Since they are shared by 3 channels, only one
channel is available at one time.

I/0 PORT

CHANNEL SELECT -- (System Control Port)

I/0 Address and Data Pattern

msb 7 6 5 -- 0 1lsb
e e e e e +
1SRI2!ISRI1] XXXXXXXXXXXXXXXXX | OUT 90H (144D)
e ————— +

SRI 2/1 Serial Interface Select

SRI2 SRI1l USER

0 9 -———- Not used

0 l] e SIO 1

1 Q ———— Floppy disk. (SIO 2)
1 1 ----— RS-232C

NOTE: The current status of this port is saved in
SYSSTAT (FE44H) by the System ROM.

UART MODE CONTROL

msb 7 - 5 4 3 2 1 0 1sb
tr—————— BT S S
i XXXXX |CLS2!CLSl1} PI |EPE|SBS| OUT D8H (216D)
pm—————— T S
SBS Stop bit select
0 1 bit
1 2 bits (*)

(*) When data length is 5 bits,
stop bits is 1.5 bits.

EPE Even Parity Enable
(meaningless if PI = 1)
0 0dd parity
1 Even parity
PI Parity inhibit
0 Parity enable
1 Parity disable

CLS2/CLs1 Character Data Length
5 bits
6 bits
7 bits
8 bits

PO S
PSS

UART STATUS READ

I/0 ADDRESS AND DATA PATTERN

msb 4 3 2 1 0 1sb
= o ———— +
i XXXX |{TBRE| PE | FE | OE |dcd/dr| IN DBH (219D)
torm———— e e ettt TP PR +
dcd/dr DCD/DR (O=on/l=off)
OE Over-run Error (l=Detected)
FE Framing Error (l=Detected)
PE Parity Error (l=Detected)
TBRE Transmit Buffer Register Empty

Set UART

I/0 Addre

I To7
(188D)
———

l=ready to receive data to transmit

Baud Rate (PPI 81C55 Timer Section)
ss and Data Definition

6 5 4 3 2 1 (0} 1sb
o $m——— $m——— fm————— fm———— fm———— Fmm——— +

I M2 I T13 I T12 I T1l1 I Ti0 I T09 I TO08 I OUT BDH

$———— i fm———— - e - R +
I T06 I T05 I TO04 I TO3 I TG2 I TOol I TOoO I OUT BCH

t———— t———— - Fm——— tm———— +m———— tm———— +
M1/M2 Specify timer output mode

00B = Single Square Wave

01B = Continuous Square Wave

10B = Single Pulse On

11B = Continuous Pulse

Note:
To set a Baud Rate use the values below.

Fmm————————— o —————— o —————— +
! Baud Rate | BCH ! BDH i
o ————— Fm———————— Fm———————— +
H 75 | 00 H 48 !
o ——— o —————— Fm————————— +
' 150 | 6B H 45 !
e ——— Fm——————— Fm———————— +
| 300 | 00 H 42 i
Fmmm————————— Fm———————a e e ettt +
i 600 | 00 ! 41 i
S Fm———————— Fm———————— +
i 1200 | 80 ! 40]
o Fm———————— o ————— +
! 2400 | 40 | 40 i
fm—————————— e ——— o ———— +
H 2400 | 40 1 40 H
o Fm——————— Fm———————— +
! 4800 | 20 | 40 |
S Fm——————— o ———— +
i 9600 | . 10 ! 40 - {
o —————— fm———————— Fmmmm———— +
H 19200 | 08 ' 40 i
e ——— o ———— o ——— +
Note:

It is impossible to read the current UART status directly.
ROM #0 always saves the new status in RAM when it is changed.

UART DATA I/0 PORT

I/0 Port and Data Pattern

msb 1sb

bt b R R R
{D7iD6!D5iD4!D3|D2i{D1:D0! IN/OUT CBH (203D)
=ttt ===t ——%

If the data length is less than 8 bits, the output data must
be right justified. Input data is right justified by the UART.

SOFTWARE DESCRIPTION

How to Initialize the Serial Port

The basic sequence to initialize the Serial Port is as fol-
lows.

1. Select Channel
2. Set Baud Rate

3. Set transfer mode.

The following sample program shows. the initialization sequence
more detailed.

the program explains how to initialize the serial port. This
sample program initializes the RS-232C Channel to: 9600 bps, even
parity, 7 bit data length, 1 stop bit, and no control for
Xon/Xoff or SI/SO. The program updates the work area for ROM #0.
_.One may skip that portion because there will be no problem, even
if updating the data is skipped. ROM #0 always initializes the
RS-232C Port when entering Terminal mode or "OPEN COM:" of Basic
command issued by the Mode string. . ’

.
14
.
14
’

N 4

SERMOD EQU F406H
; F406H
H F407H
H F408H
; F409H
H F40AH
; F40BH
INHDSP
INHIBIT
COMACT EQU FE43H
SYSSTAT EQU FE44H
BAUDRT EQU FE4AH
address
INHBIT EQU FE41lH
; I/0 PORT ADDRESS
sCp EQU 90H
PORTB EQU BAH
TIMEL EQU BCH
TIMEH EQU BDH
RTSDTR EQU 3FH
INITSERI:

ENTRY: [C] = USER ID

.
’
.
’
.
L

Sample Program to Initialize the Serial Port

Data in the system work area must be updated

e we we we we wp

; 6 bytes for MODE string
Baud rate specifier
Parity mode
Word length
Stop bits
XON/XOFF control
SI/SO control

current user ID for
serial port.

~e

H 00B = Not used

H 91B = SIO2

H 10B = SIO1

H 11B = RS-232C
; SCP port status

;: Baud rate Table entry

: @ inhibits XON/XOFF control

System Control Port
RTS/DTR set port

Timer set Low

Timer set High

RTS/DTR data for RS-232C
; Use FFH for SIO1/2

“~o s np Wi wp

[B] = BAUD RATE SPECIFIER. ASCII NUMBER (1 TO 9)

SAME NUMBER

" E;llrzlqul

AS TELCOM

--See 1if Serial Port is available

LDA
ORA
JzZ

cMP
JzZ

STC
RET

COMACT
A
SELECT
) Cc
SELECT

(4

; Get current user ID
;: No one use Serial I1/07?
then branch
: Same User?
Then branch
; Set Error Flag
: Return to caller

SELECT:
; —=— RESERVE SERIAL PORT ~-

DI
MOV A,C
STA COMACT
reset
of

Inhibit all disturbance
Get User ID
s Set user ID.

~e ~o

Be sure to
; the User ID to 00 after all

: tasks are finished,else the

; serial port can not be shared

RRC
RRC
MOV C,A
LDA SYSSTAT
ANI 00111111B
ORA C
ouT SCP
STA SYSSTAT
; ——-Set BAUD RATE --
SETBAUD:
MOV A,B
STA SERMODE
SIBI: l'1.“
RLC
LXI H,TIMTBL
MOV C,B
MVI B,0
DAD B
SHLD BAUDRT
ROM #0
tializes
MOV A,M
ouT TIMEL
INX H
MOV AM
ouT TIMEH
MVI A,C3H
ouT B8H
timer
; SET TRANSFER MODE
MODE:
IN PORTB
ANI RTSDTR
ouT PORTB

~e

: with another user.
; Move Bit0-1 to Bit 6-7
: Save it
; Get current SCP status
; Cancel channel control
Set new channel control bits
Select channel
: Update SCP status

e weo

+ Get Baud Rate ID

; Update Baud Rate Specifier
Convert to Binary Number:
*2, because table entry is

: 2 bytes

~e o

[C] = offset

~e mo we

; Save entry point for nusic
; routine. Music routine in

: destroy temporary changes
; the timer count and reini-

;: it with this entry data
; after finished.

; Get higher Value

To start timer
: Use this walue to start

: If RS232C RTSDTR=3FH to
: activate RTS/DTR
: else FFH to unactivate

~e

IN C8H ; Dummy read to clear

: receive buffer register
MVI A,00001110B ; 7bit, even parity,l stopbit
ouT OD8H Set mode

~e

: —--Update SERMODE --

LHLI SERMODE+1 : Set PTR
MVI M,"E" ; Set parity check mode
INX H H
MVI M,"7" : Set Word length
INX H :
MVI M,"1" ; Set Stop bit length
INX H H
MVI M,"N" ;: Set XON/XOFF control mode
INX H H
MVI M,"N" : Set SI/SO control mode
XRA A : Set CF=0
STA INHIBIT ; Disable XON/XOFF control
EI H
RET H
TIMTBL:
DB 00H, 48H ; 75 bps
DB 6BH, 45H H 150 bps
DB O0H,42H : 300 bps
DB 00H,41H .0 600 bps
DB 80H, 40H : 1200 bps -
DB 40H, 40H ; 2400 bps
DB 20H,40H ; 4800 bps
DB 10H, 40H ; 9600 bps
DB 08H, 40H ; 19200 bps

SEND DATA TO THE SERIAL PORT

The sample program below describes how to send data to
the serial port. It performs no XON/XOFF and no SI/SO control.

SEND DATA TO THE SERIAL PORT

WRITE:

ENTRY: [C] = DATA TO BE SENT
IN - D8H ; Get UART status
CPI 00010000B : See if transmitter buffer
; register is empty
JZ WRITE ; Wait until TBR becomes empty
MOV A,C Get a character to send

ouT C8H Send it out the serial port

RET

~e weo wo

923160

-READ DATA FROM THE SERIAL PORT

The sample program below explains how to read data from
the serial port by using RST 6.5. This program only reads data
from the serial port with RST 6.5, no XON/XOFF and no SI/SO con-

trol is performed.

; ** Read data from the Serial Port using RST 6.5

ORG 3CH ; Entry point of RST 6.5
RST6E5: DI H
JMP READ H
ORG 2?2?72 :
READ:
PUSH H ; Save all registers
PUSH D H
PUSH B H
PUSH PSW H
IN C8H ; Read the data
MOV L,A ;: Save it
IN D8H : Get error status
ANI 00001110B : Strip error bit
MOV H,A H
SHLD- BUFFER : -
POP PSW ; Restore registers
POP B :
POP D :
POP . H :
EI H
RET ;
BUFFER DS 1 : Got data

DS 1 : Error status

AVAILABLE SYSTEM AREA

You may want to use th system area for your own use. In this
section, the available work area of ROM #0 is described. Make
sure to keep the compatibility with the system ROM #0, if you
want to use this area. "

The Serial Input Buffer from FE4CH (65100D) to FFC3H
(65475D), is reserved by the system ROM, but you can use it for
your own routines.

SERMOD saves the RS-232C mode string.
This area has six bytes which indicate the RS-232C string
mode, specified by the "STAT" command in TELCOM or OPEN "COM:"

command in Basic. The contents are as follows:

SERMOD at F406H (62470D): RS232C Sstring mode buffer

F406H ; Baud rate specifier (1 to 9)
F407H ; Parity Mode (N/E/O/I)

F408H ; Word length specifier (5 to 8)
F409H : Stop bit (1/2)

F40AH : Xon/Xoff control (X/N)

F40BH ;7 SI/SO control (S/N)

INHIBIT at FE42H. (65090D)
This byte is the XON/XOFF Inhibit Flag ® inhibit XON/XOFF
control, else enabled.

COMMACT at FE43H (65091D)

This byte indicates who is using the serial port. Make sure
to reset to 0 after using the serial port, otherwise the
serial port is not available for another user.

00H = No user
G01H = SIO2
10H = SIOl
03H = RS-232C

CMPNT at FE46H (65094D): Character count in Buffer
This byte has the character count in the serial buffer.

REDADDR at FE46H (65094D)
This byte indicates the last read character displacement.

WTADR at FE47H (65095D)
This byte indicates the last written character displacement.

BAUDRT at FE4AH (65098D)
this points to the table of the Baud rate.

1.9 CASSETTE (CMT) INTERFACE

Cassette interface uses the SID (Serial Input Data) pin of
80C85 and the SOD (Serial Output Data) pin. The Motor is con-
trolled by the SCP (System Control Port, 90H). The on-bit, Logi-
cal High, is represented by 2400Hz wave (called MARK) and the
off-bit, Logical Low, is 1200Hz wave (called SPACE). So the baud
rate of the CMT can be up to 1200 bps, bits per second (the sys-
tem ROM #0, uses 600 bps to maintain the compatibility with the
PC-8001A). The physical interface of the CMT is described in this
chapter. Information on how to control the Motor of the CMT, how
to write data to the CMT and how to read data from the CMT. For
information on File Format please refer to Chapter XX.

WRITING OPERATION

While SOD is high, MARK is put out to MIC and TxC. Other-
wise, SPACE is put out. Refer to the next illustration.

high o + o ——— e
SIO ' . ! | P
' low : ! e + A —— +.
' » N P : |
MIC/TxC | <MARK >} <(SPACE> | <MARK > |<SPACE> | <MARK>

READING OPERATION

Input wave from EAR Pin is reformed to Square wave and sent
to SID Pin of the 80C85 as shown below. The input wave is in-
verted on the way to the SID Pin from EAR Pin. In the reading
operation, the electric high/low level has no meaning. The pulse
frequency indicates whether high or low data. The frequency,
2400Hz means logical high and the freguency 1200Hz means low.

EAR ----- | <=-= MARK --=->}|<~-- SPACE -——-- >

] { 1
! L] i

—t d=t b=t F=—t Fomt Fm—t e -
SDI -=~—-- [T S R i ! H | i {
+=+ 4=+ +=+ +=+ ==t ==t ==t
2400HzZ 1200Hz

I/0 PORT FOR CMT

SCP ~--- System Control Port
msb 7 6 5 4 3 2 1l 9o 1lsb
o ————— T L S
I -I-I-I-IREMOTEI - I ~-I -1 QUT90H (144D)
s T T e B T b ———

REMOTE CMT Motor Control
O = CMT Motor OFF
1 = CMT Motor ON

Description: The current status of this port is saved
at SYSSTAT (FE44H), so you have to update this area when you want
to change the status of this port.

PPI 81C55 Command Set

msb 7 6 5 4 3 2 1 0 1lsb
B it Sl Sl Dt Rt Cts Dt Dt &

ITM2ITM1I 0 I 0 I ? I ?2 I 1 I1T1I OUTB8H (184D)
e s St a2

T™™™2/1 Timer Command for PPI
T™M2 TM1
0 @ --- NOP
0 1 --- Stop
1 @ --- stop after Terminal Count
1 l --- Start

BAUD RATE GENERATION

The Baud Rate is generated by the software timing routine.
In the writing operation, the bit data for the SOD Pin is set and
it is held during the proper duration by the software wait-
routine. On reading, a data bit is read in the proper interval
which is controlled by software. The CPU uses a 2.4576MHz clock,
so the time of 1 bit output/input should be counted with this
clock. The sequence of the counting operation is shown below.

b ———— T +
} BAUD RATE ! NUMBER OF STATE '
' H for 1 bit !
B T T o e +
! 75 bps H 32448 H
o ————— fmm e ———————— +
i 150 bps ! 16224 |
o ——————— fmmm e +
H 300 bps | 8112 H
- ———————— R +
1 600 bps] 4056 H
b ittt +
! 1200 bps ! 2028 I
B fmmm e —————— +

WRITING DATA TO THE CMT
Writing data to the CMT is performed by controlling the SOD
pin. The following program illustrates how to write a byte to the
CMT.
Write a byte to the CMT, the lowest routine
Assumption:
CMT Motor is rotating regularly and CALLED
by the Interrupt Disable
INPUT: [A] = Data to be sent

: OUTPUT: None
: BAUD Rate = 600 bps
W

RITE:
MOV B,A ; 4: Save Data
MIV A,50H ; 7: Write start bit
SIM H 4:
CALL HOLD : 18: Wait 4043 sState
IN PORTC ; 10: Dummy to adjust timing

MOV C,08H : 4: Set data length in bit

BYTEO:

MOV A,B ;i 4: Retrieve data

RLC H 4: Set a bit in CF

MOV B,A : 4: Save data

MVI A,DOH ; 7: To send MARK

Jc BITO ;10/7: Branch if HIGH

MVI A,50H ; 7: To send SPACE
BITO:

SIM HE

CALL HOLD ; 18: Wait 4018 state

DCR C ; 4: Bump counter

JNZ BYTEO ;10/7: To send next bit

MVI A,DOH : 4: To send stop bit

RET ; 10: It is the responsibility

of the CALLER routine
to make an adequate
length of the stop bits

~e w0 we
s o0 ao

HOLD1 GIVES
24 * [HL} + 7 (+18))
states delay. (+18) means "CALL" instruction Status
so HOLD gives 4043 states delay including "CALL" of the Caller

o w4 s m me

HOLD:

LXI H,167 : 10: Faor 1 Bit (600 Baud)
HOLD1: : .

DCX H ;. 6

MOV - A,L HE-

ORA H H 4:

JNZ HOLD1 :10/7:

RET ¢ 10:

READING DATA FROM THE CMT

Sample program for reading a Byte from the CMT

READ:

Assume called with Interrupt disable

CALL BITI : 10: Search for start
JcC READ :10/7: Wait until Start bit
H : has come
LXI H,?2?2?? ; 10:
CALL HOLD1 ;
MVI C.,8 ;7 7: Read 8 bits
BYTEI: ‘
CALL BITI ; 18:
MOV A,B HE-
RLC ; 4: Move CF to Bit-0
MOV B,A ;4 '
DCR C : 4: Bump counter
JNZ BYTEI :10/7: Read next BIT
RET : 10: No check for Stop bit
"; GET A BIT
; EXIT: CF = 1 IF MARK
CF = 0 IF SPACE
BITI:
CALL SYNC : 18:
MOV A,D ;: 4: Get counter
CPI 16 : 7: See whether MARK or
H : SPACE, If MARK then
: : CF=1 else CF=0
PUSH PSW : 12: Save CF)
LXI H,??? : 10: Assume MARK
Jc BITI1 :10/7: Good assumption
LXI H,??? : 10:
BITI1l:
CALL HOLD1 : 18:
POP PSW : 10:
RET ; 10:

UL~ ~¢ Se ~o =

YNC:

SYNC1:

SYNC2:

EXIT:

[D] =

MVI

RIM
ANI
MOV

RIM
ANT
CMP
JZ

RIM
DCR
JZ

ANI
CMP
JNZ
MOV
CpPI

JNC
RET

CALCULATE PULSE DURATION

LOOP COUNT IN THIS ROUTINE

D, 36

: 7: Reset counter
H : Margin is about 10%

+ 7: Isolate SID bit
: 4: Save it

4: Get Current status
7: Isolate SID bit

4: Same status?
: then wait

4: Get current SID
4: Bump counter

:10/7: Too long, restart

7: Isolate SID

4: Get result
7: Too short? (392 state,
: : margin 20%)

10/7: then restart

1.1? BARCODE READER

This chapter explains the Electrical specifications and the
basic theory of operation of the Barcode Reader. The Barcode
Reader programs on the PC-8300A Personal Application Kit Tape,
assume that operation is done with the HEDS-3071 (produced by HP
Corporation).

ELECTRICAL SPECIFICATION

Refer to the PC-8300A Users Guide for information about the
shape and Pin connection of the Barcode interface.

One may connect any Barcode Pen to this interface. But NEC
recommends the products of YHP (Yokokawa HP) or Mecano Kogyo. It
is better to use a pen that has a Power switch, for saving the
electrical power of the PC-8300A.

The data line of the Barcode Reader is connected to Pin-2 of
the BCR. This pin is connected to RST 5.5 of the CUP (80C85) nd
Port C-3 of the 81C55 as shown below.

e +
o +2 9{ 80cCs85 |

B IIRXDB |-==—=———- dmmd b ——— IRST 5.5/

c | ! | | | |

R IGND f ===+ ! i Fommm +

b V7 133k | |

{GND P ===+ i | Fo—mm——— +

! i i 1PORT | 81C55 |

ivee j--—m———- + +om—— : :
Fo——— + C-3 2{ BAR |

Fomm +

While the Barcode Reader is powered on, PIN-2 is kept at a
low level, and RST 5.5 is high. The Black Bar is represented by
logical Low, SPACE BAR is High respectively.

THEORY OF OPERATION

This section describes the basic sequence of reading data
from the Barcode Reader.

1. If power on, RST 5.5 is activated. At the first point of
the RST 5.5 routine which is interrupted by RST 5.5 - dis-
ables all interrupts.

2. Pole the Bar Code DATA port. And calculate the duration
of the same status and save the status and duration.

3. If Low 1level continues too long assume that Power off

and enable.

4. Decode the got Data and transfer the data to the upper
routine.

Data from bar code reader

Frm——tm
J1011I1011I IN BBH (187D)
Frm——dm

7 6 5 4 3 2 1 0

s e S R e T it
I-I-I-I-IBCRI-I-~-I-T1I
s e T e e ettt s

BCR Data from bar code reader

1.11 Interrupt Function

This machine have a 3 level input with priority and works
with input RST 7.5,6.5, and 5.5 of 80C85. Interrupt level and its
priority order is the following:

Priority Order Interrupt channel Function
High RST 7.5 Key int
! RST 6.5 UART
Low RST 5.5 BCR

Key int It checks the key input by the 256Hz clock from
uPD1990QAC

UART Receipt interrupt of UART

BCR Interrupt for bar code reader

These interrupt have their own mask flags and each can be
masked independently. Mask flag can be reset by SIM (Set Inter-
rupt Mask) command.

7 6 5 4 3 2 1 9
bt ———— o ———— A o e e R bm———— +
! -} -1t -} R7.5 | MSE | M7.5 | M6.5 | M5.5 |
et el S N e ——— o ——— pm————— +
M5.5 RST 5.5 Mask flag
0] Reset
1 Set
M6.5 RST 6.5 Mask flag .
9 Reset
1 Set
M7.5 RST 7.5 Mask flag
9 Reset
1 Set
MSE Mask set enable
0 Mask set disable
1 mask set enable
R7.5 Reset RST 7.5
0 Set

1 Reset (In spite of bit 2 or bit 3)

1.12 I/0 port address

Upper I/0 address

LSB
1000
1001
1010
1011
1100
1101
1110
1111

(1) ROM cassette

MSB

Function

ROM Cassette

System control port
bank control port

PIO 81CS55 port

UART data I/0 port
UART data control port
Reyboard

LCD

128K bytes ROM cassette select and Alé6

e ———
11000:0000} OUT 80H (128D)
et
7 6 5 4 3 2 1 0
e s el e R tom——— +
t -+t -4+r=-1-%1t-1-1 ROM SEL | Ale |
b e ——————— = +
Al6 Address 16
ROM SEL ROM cassette select’
0 128K bytes ROM erase select
1 128K bytes ROM select
128K bytes ROM cassette low address
gt
1100010100} OUT 84H (132D)
b ———t
7 6 5 4 3 2 1 0
B il Sttt St et e e T e)
! A7 | A6 | A5 | A4 | A3 | A2 | Al | AOQ |
Dt R i i K K Mttt Sttt 3
A7 - A0Q ROM cassette low address
128K bytes ROM cassette high address
e
110001000 OuT 88H (136D)
temm— et
7 6 5 4 3 2 1
+m——— tm——— == +————— e +———— +————+
! A15 | Al4 | Al13 | Al2 | A1l ! A10 | A9 |
Fm———— +———— == +————- = +———— +————
Al5 - A8 Rom cassette high address

128K bytes ROM data read

tm———t e ——t
1100011100} IN 8CH (140D)
B ateT Ty
7 6 5 4 3 2 1 0
s ittt Hata e T B R el T T §
i D7 { D6 | D5 | D4 | D3 | D2 | D1 | DO |
et et St et T A A Tt 3
D7 - DO ROM data
(2) sSystem control
ey ;
11001100001 OUT 90H (144D)
e ————t
7 6 5 4 3 2
tFom————— tm———— tm—————— tm————- tmm——————— -
{ SELA | SELB | PSTB | TSTB | REMOTE | -
Fm————— tm————— tm————- tm———— pm——————— =
REMOTE Cassette motor control
0 OFF
1 ON
TSTB Command strobe to clock
0 OFF
1 : ON
PSTB Strobe to printer
0] OFF '
1 ON
SELA SELB Serial I/F select
0] 0 Not used
0] 1 RAM file
1] Floppy disk
1 1 RS-232C

(3) Bank control
E R

11010,0001 OUT AlH (161D)

LADR2 LADR1 Low Address 0000-7FFF selection
0 0 Bank #0 (ROM #0)
0 1 Bank #1 (ROM 1)
1 o Bank #2 (RAM #2)
1 1 Bank #3 (RAM #3)
DR2 HADR1 High Address 8000-FFFF selection
0 1) Standard RAM (RAM #1)
0 1 Not used
1 0 BANK #2 (RAM i#2)
1 1 BANK #3 (RAM #3)

(4) Bank status : ' :

The current status of the memory, the status of the bank
switching, can be examined by the IN instruction. The IN instruc-
"tion reads 8 data bits from the specified I/O0 port.

e i s i Rt S i et &
MsB {7 16 {51 41312111} 01 INAOH (160D)
et e R e i s Rt s

Bit 7 --- Serial Interface status #2

Bit 6 --- Serial Interface status #1

Bit 5 --- Not Used

Bit 4 --- Not Used

Bit 3 --- High address (8000H - FFFFH) status #2
Bit 2 --- High address (8000H - FFFFH) status il
Bit 1 --- Low address (0000H - 7FFFH) status #2
Bit ® --- Low address (0000H - T7FFFH) status #1

Serial I/F #2 Serial I/F #1

Not Used

SIO port

Floppy disk port
RS-232C port

rHres
rere

High Address #2 High Address #1

Bank #0 (Ram #1)
Not used

Bank #2 (Ram #2)
Bank #3 (Ram #3)

HH e
rPeRre

Low Address #2 Low Address #1

Bank #0 (ROM #0)
Bank #1 (ROM #1)
Bank #2 (RAM #2)
Bank #3 (RAM #3)

rreese
rere

Refer to Chapter XX for more information on the Serial Interface.

(5) PIO 81C55 address

I/0 address Selection
10111000 Inside command/status register
10111001 General 1I/0 port A (PAO-PA7)
10111010 General 1I/0 port B (PBO-PB7)
10111100 General I/0 port C (PCO-PC5)
Port A out
b ———t
1101111001} OUT B9Y9H (185D)
et
7 6 5 4 3 2 1 0
tm———— te———— tm——— tm———— tm———— tm———— tm———— tm———— +
i PA7 | PA6 | PAS | PA4 | PA3 | PA2 | PAl | PAQ |
tm———— tm——— tm———— tm————— tm——— t——— o ——— tm——— +
| PD7 | PD6 | PD5 | PD4 | PD3 | PD2 | PD1 | PDO |
tm————— tm——— tm———— tm———— tm———- tm———— tm——— tm——— +
| KS7 | Rs6 | KS5 | KS4 | Ks3 | Rs2 | KS1 | Kso |
Fm———— tm———— tm———— tm———— tm———— t————— +——— t———— +
{i-- 4 -- }+ -- J CCK }{ CDO | C2 | C1 | Co
Y tm———— tm———— tm————— tm———— tm———— tm——— tm———— +
PA7 - PAOQ LCD chip select
PD7 - PDO Printer data
KS7 - KsO Keyboard data
c2 - cCo Clock command Out Port
CDO Clock data out port
CCK Calendar shift clock
0 Clock OFF

1 Clock ON

Port B out

e ———t
1101111010 OUT BAH (186D)
R "
7 6 5 4 3 2 1
Fm———— P — pm————— Fm———— e ————— b ————
! RTS | DTR | BELL ! APO | DCD/RD | MC ! PB1
tm———— m———— o ———— pm———— pm——————-— B
i ===} ===} ===} == | === PF-—— 1 -—-
S — tm———— R S m——————— b ———
PBl - PBO LCD chip select
MC Melody control port
0 ON
1 OFF
DCD/RD RS-232C's DCD/RD select
0 Ring detect
1 Data carrier detect
APO Auto power off out
0 OFF
1 ON
BELL Buzzer out
0 Yes
1 No
DTR RS-232C DTR out, Active low
RTS RTS out, Active low

Port C Input

fom e ——
1101141011 IN - BBH (187D)
R s
7 6 5 4 3 2 1 0
o ——t————— m————— m———— bm—————— B ———— +
! -1V -1 DSR | CTS | BCR | BUSY | SLCT | CD} |
o ———— ————— A — m————— t—————— m————— +
CﬁI Clock data in port
SLCT Printer select
0 Printer deselect (Erase select)
1 Printer select
BUSY Printer busy
0 Printer ready
1 Printer busy
BCR Bar code reader data input
CTs CTS in active low |
DSR RS-232C DSR in active low
(6) UART data I/O port
e
1110011000 IN/OUT C8H (200D)
ot ———

7 6 5 4 3 2 1 0
e A e At St it St Rt £

1 1]]]] t] I
1 1 t 1 t 1] 1

e Sl e St St St ettt et

UART data

(7) UART control port

Command write

tom——tm———t
11101:1000 OUT D8H (216D)
e .
7 6 4 3 2 1 0
e i S e it m—————— ot ———— = +
} -1 -1 -1 CLS2 | CLS1 | P! | EPE | SBS |
D e e tm————— e St m————— +
SBS Stop bit select
0 Stop bit length 1 bit
1 Stop bit length 1.5 bit in case data
length is 5 bit other case 2 bit
EPE Even parity enable
0 0dd parity
1 Even parity
PI Parity inhibit
0 Parity generation check
1 Parity generation check inhibit
CLS2 CLs1 Character length select

PrPres
PR

Data length 5 bit
Data length 6 bit
Data length 7 bit
Data length 8 bit

Status read
o ————

11101110001

DCD/RD
0
1

IN

D8H (216D)

+ + + + +
- | TBRE | PE | FE | OE | DCD/RD |
+ + + + +

-—— e s — ———— ——— s —— ——

Data carrier detect/ring detect
ON
OFF

Overrun error
No error
Overrun error generation

Framing error
No error
Framing error generation

Parity error

- No error :

parity error generation

Transmitter buffer register empty
Empty
To transmit new data to TBR

Low power signal
Enough power
Falling power voltage

SYSTE¥ SLOT

Assignment of Signal

Functions of the Pin Signals

1. vDD (OUT) [Pins 1 and 2]
If you don 't use the BCD, this Pin can supply the current
w1th SQmA '

2. ADO - AD7 (IN/OUT) ([Pins 3 - 10]

The lowey 8 bits of the memory address (or I/0O address) ap-
pear 9% the bus during the first clock cycle of a machine
cycle. It then becomes the data bus during the other cycles.

3. A8 - aAl5 (OUT) ([Pins 13 - 20]
The most significant 8 bits of the memory address or the I/O
address. The output goes off during the Hold mode, it then
becomes "H" level, because it is connected to a pull up
re51ster (100k Ohm) inside.

4. /RD (OUT/3-state) [Pin 27]
The read control signal, 3-state during Hold mode.

5. /WR (OUT/3-state) [Pin 28] ‘
The write control signal, 3-state during Hold mode.

6. IO/M (OUT/3-state) ([Pin 29]

When this signal is "H" level and "L" level, respectively,
the CPU has access to the I/0 and the memory. 3-state during
Hold mode.

7. ALE- (OUT/3-state) - [Pin 30]
It is used ¢o strobe the address information (ADO-AD7). 3-
state during Hold mode.

8. HOLD (IN) ([Pin 31]
The CPU, upon receiving the hold request, will relinquish
the use of the bus as soon as the completion of the current
bus transfer. When the Hold is acknowledged, the /RD, /WR,
IO/M, ALE lines are 3-states and the AD8 - AD15 lines are
"H" level.

9. HLDA (OUT) ([Pin 32]
It indicates that the CPU has received the HOLD request and
that it will relinquish the bus in the next clock cycle.

10. INTR (IN) [Pin 33]
The general purpose interrupt. It is sampled only derng the
next to the last clock cycle of an instruction and) durlng

Hold and Halt states.

11. /INTA (OUT) [Pin 34] _
It is used instead of (and has the same timing as) /RD
during the instruction cycle after an INTR is accepted. '

12. RESETO (OUT) [Pin 35]
It indicates the CPU is being reset. Can be used as a systen

reset.

13. READY (IN) [Pin 36]
If it is "L", the CPU will wait an 1ntegra1 number of clock

cycles for it to go "H" before completing the read or write
cycle. oo

14. /ROME (OUT) [Pin 37] .
The enable signal for external ROM cartridge or general
purpose. When the upper 4 bits of the I/O address are 8, it

goes "L".

40H138

Pm————— -4 .

| YQ|~-----ROME
IO/M —--=161 Y1|----- CONTROL
— L i ~
AL5 —--——- TR oY p— BANK

L Y3 -———o 8155
Alg —-——- IC Y4i-———o 6402D
A13 -=-—- {B Y5-———- 6402s
Al2 ——-—- A Y6i-———- KEY

: Y7{-———- LCD

F—————— +

15 E (ouT) ([Pin 38]

It is used as a memory enable signal of ‘the read or wrlte 3,‘

cycle. E is the logical OR (active high) of the /RD’ andw{WR ;

16. /BANK 3 (OUT) ([Pin 39]
the memory enakle signal of the external RAM cartridge.

17.3apEsp {IM) .(Pin 41]
*f it is "H", the memory of the high address (8000H to
FFFFH) in the PC is disabled.

18. LADRSD (IN) [Pin 42]
If & is) "H" the memory of the LOW address (QH to IEFFH) in
the . PCals disebl&da

19.:CLK couwl; [Pin 43].
2.5MHz clock output It is the same phase as the CPU clock.

20. POWER (OUT) [Pin 44]
It is the signal /RESET (connected to the CPUS is reversed.

DC CHARACTERISTICS

o ——————— e +
| Symbol | Drive Capacity (ma) |
T o —————————— +
| ADO - AD7? L 4.4 i
oS e ————— e ———— +
{- A8 =~ Al5 1 4.4 !
o ————————— B e T +
{ /RD,/WR,IO/M | 4.4 !
{ ALE,RESETO | !
e ———————— fmm————————————————— +
!HLDA /INTA,CLK|} 2.0 H
o ————— o ————————————————— +
%E,/ROME /BANK3' 1.1 H

trm e ——————— e BT P +

AC GHARACTERISTICS
see @age‘ﬂ 7»~%23§*;] i

MEMORY CONTROL CIRCUIT

In this section, RAM #n means. the chip number on ‘the main’
board. The memory of the PC-8300A consists of RAM 16K and ROM 32K
bytes, and can be expanded to 48K bytes on optional RAM socket
(RAM Chip #2 - #7) and to 32K bytes on the user ROM socket 4ROM “;
#1) in the PC. § e T

RAM chips (#0 - #7) and ROM (#0 - #1) are connected o th&
same DATA bus and their outputs are controlled by /FE and'fBANR

signal. There are five banks of BANK #0 (available ROM #0), ' Bank

#1 (user ROM #1), STDRAM (available RAM #0 - #1 and optloaal RAM.
#2-#3), BANK #2(optional RAM #4 - #7) and BANK #3 (Rﬁm
cartridgej.

ADDRESS STDRAM BANK #2
Fomm——— e -—+
——————— et S B TC LTt
FFFH IRAM { | IRAM | |
E000H L L 1#T b
------- S et S B T Tl .
DFFFH IRAM | | IRAM- | |
CO00H L #0 L L L #6
——————— St DLl DL S LDt Lt T B T - e e
BFFFH | |RAM | IRAM | | -~--> OPTIONAL RAEM" E
AoooH |} #2 | b #5 1 AR
------- [4=——=—4 +o—————et | S
9FFFH | |RAM | IRAM | | e
8000H | | #3 | Io#4]
———————] =t tm—————t
SRV + .

RAM ADDRESSES S s LI 3

The way in which banks are converted is by software control,
described in Chapter XX. When the PC is reset, it becomes same
mode as before reset of the composition No. 1-3. Eut in the cass
of nothing of optional RAM BANK #2 -~ #3, it can become only No. 1
mode. If optional ROM is installed, another composition No; .4-6

are possible. Further, as it becomes 64K mode bytés full. RAM by ¢
optional RAM BANK #2 - #3, one can use a CP/M, etc. -

